This course will cover the following topics

Maihematics
I: Course e Differentiation

o e Hyperbolic Functions

e Partial Differentiation

e Integration

e First Order Ordinary Differential Equations
e Vectors

e Numerical Methods

e Probability and Statistics
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Differentiation: Outline of Topics

@ Basic Differentiation

® The Chain Rule

© Applications of Differentiation
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Differentiation

Table of Basic Derivatives

Basic
Differentiation

sin () cos (x)

cos () —sin (z)

sinh (z) cosh ()
cosh () sinh (z)

Table: Table of Basic Derivatives
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Differentiation
Table of Rules for Differentiation

Basic NOteS
Differentiation

1 U+ v % + j—z Addition Rule

2 Cu Cg—g (C =constant)

3 uw vg—; + ufl—g Product Rule

pdu g dv .

4 u/v ~dz_pdz Quotient Rule

5 | flu(@) | f(u(z))qe Chain Rule

6 % + For Inverse Functions

dr

Table: Table of Rules for Differentiation
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Differentiation: Basics

Some Basic Examples

Let's try and calculate some basic derivatives

Basic
Differentiation
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Differentiation: Basics

Some Basic Examples

Let's try and calculate some basic derivatives

Example

Basic
Differentiation




Differentiation: Basics

Some Exercises (Try for Yourself)

Try to show the following results

Basic i

Differentiation d 1 B 1
de \z) a2
i
aprry__ 1
de \ ¥z ) 34
i
4
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Differentiation: Applying the Rules

Applying the Addition and Scalar Multiplication Rules

Rules 1 and 2 deal with addition of functions and multiplication
by a constant, as in the following example:

Basic
Differentiation

Compute the following derivative

d
P (2¢* — 3cosx)
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Differentiation: Applying the Rules

Applying the Addition and Scalar Multiplication Rules

Rules 1 and 2 deal with addition of functions and multiplication
by a constant, as in the following example:

Basic
Differentiation

Example

Compute the following derivative

d
P (2¢* — 3cosx)

Applying the addition formula yields

d d
— 92— (%) —3—

o (e") 3da: (cosx)
= 2e® —3(—sinx)
= 2¢" 4+ 3sinzx

7 /435



Differentiation: Applying the Rules

Applying the Addition and Scalar Multiplication Rules

Basic
Differentiation

Compute the following derivative

i(mé_x— )

dx

N|=
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Differentiation: Applying the Rules

Applying the Addition and Scalar Multiplication Rules

Basic
Differentiation

Compute the following derivative
C (ad-at) = ot e
dz \77 T -2t YT
1 1
= —[|14+—-]).
2\/x +x>
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Differentiation: Applying the Rules

Example using the Product Rule

Rules 3 and 4 deal with products of functions and quotients.

Basic

LESLEEN  Compute the following derivative

% (ac3 sin :U)




Differentiation: Applying the Rules

Example using the Product Rule

Rules 3 and 4 deal with products of functions and quotients.

Example

Basic

LESLEEN  Compute the following derivative

% ( 3sin:v)

This is a product of two functions, so use Product Rule

Reminder: The product rule is given by

d (uv) = vdu —l—udv
dx T dz




Differentiation: Applying the Rules

Example using the Product Rule

Rules 3 and 4 deal with products of functions and quotients.

Example

Basic

LESLEEN  Compute the following derivative

% ( 3sin:v)

This is a product of two functions, so use Product Rule

Therefore applying the product rule yields

i (zsinz) = % (z%) sinx—i—x:}% (sinx)

e ( 3sinx) = 32x%sinz + 25 cos .
a




Differentiation: Applying the Rules

Example using the Product Rule

Compute the following derivative

Basic
Differentiation

d

1 (x2e””) .
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Basic
Differentiation

Differentiation: Applying the Rules

Example using the Product Rule

Example

Compute the following derivative

d 2 x
()
Again the product rule is used

el 2m_i 2\ 2i x
da:(xe)_dx(x)e e dx(e)
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Differentiation: Applying the Rules

Example: Differentiate a Product of Three Functions

We can use the product rule to compute the derivative of a
function that is a product of many functions

Basic
Differentiation

Compute the following derivative

- ( 2e® sin )
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Differentiation: Applying the Rules

Example: Differentiate a Product of Three Functions

We can use the product rule to compute the derivative of a
function that is a product of many functions

Basic
Differentiation

Compute the following derivative

% ( 2e® sin )
= % (ac2) efsinz
d
2_
v dx

+ J;2ewd— (sinx)
x

() sinx

= (22" 4 2%e%)sinz + z%e” cos .
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Differentiation: Applying the Rules

Example using the Quotient Rule

This example next shows a standard use of the quotient rule.

Basic

LESLEEN  Compute the following derivative

d z—1
de \z2+1

12/43%



Differentiation: Applying the Rules

Example using the Quotient Rule

This example next shows a standard use of the quotient rule.

Basic

LESLEEN  Compute the following derivative

d z—1
de \z2+1

Applying the quotient rule gives

i(m—l) _ (2+1) L @-1)—-(z-1)L (22 +1)
dz \22+1,/ (22 4+ 1)°

@+ x1—(z-1)x22

- (a? +1)°

_ 22+ 2z +1

(@241
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Differentiation: Applying the Rules

Finding the derivative of tanh x using the quotient rule

Example (Differentiate tanh x using the quotient rule)

Basic
Differentiation




Differentiation: Applying the Rules

Finding the derivative of tanh x using the quotient rule

Example (Differentiate tanh x using the quotient rule)

Basic

Differentiation d (ta h ) d Sinh X
— (tanhz) = —
dx dx \ coshz
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Differentiation: Applying the Rules

Finding the derivative of tanh x using the quotient rule

Example (Differentiate tanh x using the quotient rule)

Basic

Differentiation d (ta h ) d Sinh X
— (tanhz) = —
dx dx \ coshz

cosh x% (sinhx) — sinh x% (coshx)

cosh? z
cosh x cosh z — sinh z X sinh x

cosh? z
cosh? z — sinh? z

)

cosh?
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Differentiation: Applying the Rules

Finding the derivative of tanh x using the quotient rule

Example (Differentiate tanh x using the quotient rule)

Basic

Differentiation d (ta h ) d Sinh X
— (tanhz) = —
dx dx \ coshz

cosh x% (sinhx) — sinh x% (coshx)

cosh? z
cosh x cosh z — sinh z X sinh x

cosh? z
cosh? z — sinh? z

)

cosh?

and now using the hyperbolic identity

cosh? z —sinh®z =1,
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Differentiation: Applying the Rules

Finding the derivative of tanh z using the quotient rule (continued)

Example (Differentiating tanh z continued)

Basic

Differentiation th|s |ead5 to

1
— (tanhz) =
78 ( ) cosh? z
and since
9 1
sechx = —> sech”x = e
cosh z cosh” x

this leads to the result

% (tanh z) = sech? z.
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Basic
Differentiation

Differentiation: Applying the Rules

Finding the derivative of tan « using the quotient rule

The idea here is very similar idea to previous example

Example (Differentiate tan z using the quotient rule)

i(tanw) = i Sin &
dx ~ dz \cosz

cos a:% (sinz) — sin x% (cosx)

cos? x
cosh X cosz — sinz X (—sinx)

cos? z

2 2

cos” xr + sin“ x
cos? z

and now using the trigonometric identity

cos’z +sinz =1
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Differentiation: Applying the Rules

Finding the derivative of tan x using the quotient rule (continued)

Example (Differentiate tan z using the quotient rule)

Basic

Differentiation thIS |eads to
d (t ) 1
— (tanz) =
dz cos? z’
and since
2 1
secx = — sec’x = T
COoS T COS® T
this leads to the result
d )
— (tanx) = sec” x.
i (tanx)
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Differentiation: Applying the Rules
Using the Chain Rule

Example (Applying the Chain Rule)

Compute the following derivative

The Chain 9
Rule E (Sln 2.’1}') 5
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Differentiation: Applying the Rules
Using the Chain Rule

Example (Applying the Chain Rule)

Compute the following derivative

The Chain 9
Rule @ (Sln 2.’1}') 5

Reminder: The chin rule says that

d p du
 (Flu@)) = £ (u(z) T
So we let
du
u(z) = 2=, i 2,

flu) = sinu —— = Cosu
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Differentiation: Applying the Rules

Using the Chain Rule (example continued)

Example (Using the Chain Rule)

R then applying the chain rule gives

d . d du
e (sin2x) = 0 (f(u)) P 2 cos u,

and rewriting back in terms of the original variable x gives

d
P (sin 2z) = 2 cos 2z.
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Differentiation: Applying the Rules

Another Example Using the Chain Rule

Example (Applying the Chain Rule)

Compute the following derivative

e Chain d
Rl 1 (ln (:1:2 — 1))
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Differentiation: Applying the Rules

Another Example Using the Chain Rule

Example (Applying the Chain Rule)

Compute the following derivative

e Chain d
Rl 1 (ln (:1:2 — 1))

Let
wz) = 22-1, u(z)=22

fw) = mu f)=-
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Differentiation: Applying the Rules

Another Example Using the Chain Rule

Example (Applying the Chain Rule)

Compute the following derivative

e Chain d
Rl 1 (ln (:1:2 — 1))

Let
wz) = 22-1, u(z)=22
1
fw) = u )=
then applying the chain rule gives

d 9 2z 2z
Ln@-y=2- 2

X u

19 /435



Differentiation: Applying the Rules

Another Example Using the Chain Rule

Compute the following derivative

The Chain d
Rule d_ (COS (3(1? - 7))

T
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Differentiation: Applying the Rules

Another Example Using the Chain Rule

Compute the following derivative

The Chain d
Rule d_ (COS (3(1? - 7))

T

Let

wlz) = 3z-7, u(z)=3

f(u) = cosu f'(u)=—sinu
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Differentiation: Applying the Rules

Another Example Using the Chain Rule

Compute the following derivative

The Chain d 5 7
Rule — —
2 (cos (32 ~7)
Let
wlz) = 3z-7, u(z)=3
f(u) = cosu f'(u)=—sinu

then applying the chain rule gives

d
e (cos(3z — 7)) = —3sinu = —3sin (3z — 7).
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Differentiation: Applying the Rules

Another Example Using the Chain Rule

Compute the following derivative

The Chain d 2
Rule <ez )

dz
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Differentiation: Applying the Rules

Another Example Using the Chain Rule

Compute the following derivative

The Chain d 2
Rule — < & )
e
dx

Let

u(z) = z?, o (z)=2x

) = ¢ fu)=e"
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The Chain
Rule

Differentiation: Applying the Rules

Another Example Using the Chain Rule

Example

Compute the following derivative

% ()

Let

then applying the chain rule yields

d

e (e’”2> — ozet = 2e® .
x
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Differentiation: Applying the Rules

Another Example Using the Chain Rule

Compute the following derivative

= (@-3)")
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Differentiation: Applying the Rules

Another Example Using the Chain Rule

Compute the following derivative

= (@-3)")

Let
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Differentiation: Applying the Rules

Another Example Using the Chain Rule

Compute the following derivative

= (@-3)")

Let

u(z) = 2°-3, (2
fluw) = o', f'(u)="Tu
then applying the chain rule yields

d
dx

((x2 - 3)7> =2z x Tub = 2z(2? — 3)8
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Differentiation: Applying the Rules

Example with multiple usage of the chain rule

Compute the following derivative

o % (sin (ln (;I:Qe”)))
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Differentiation: Applying the Rules

Example with multiple usage of the chain rule

Compute the following derivative

e Chain d o
Rl 1 (sm (ln (;I:Qe”)))
First apply chain rule with f(u) = sinw,u = In (erx)

= cos (ln (mzex)) X % (ln (:1726””))
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Differentiation: Applying the Rules

Example with multiple usage of the chain rule

Compute the following derivative

Rie " % (sin (ln (;I:Qex)))
First apply chain rule with f(u) = sinw,u = In (erx)
X d X
= cos (ln (xze )) X s (ln (:1726 ))

Then apply chain rule with f(u) = Inu, u = 2>

eac

1 d
= cos (ln (m2em))%£ (achz)
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Differentiation: Applying the Rules

Example with multiple usage of the chain rule

Compute the following derivative

Rie " % (sin (ln (;I:Qex)))
First apply chain rule with f(u) = sinw,u = In (erx)
X d X
= cos (ln (xze )) X s (ln (:1726 ))

Then apply chain rule with f(u) =lnu,u ==
1 d
= cos (ln (m2em))%£ (achz)

Then apply product rule with u =z

2630

2,1)2690

= oS (ln (x2ea’

))@ [wQegc + 2xeg’].
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Differentiation: Applying the Rules

Another Example with multiple usage of the chain rule

Compute the Derivative

: d 4 z2
e Chain P (sm (36 = 1))
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Differentiation: Applying the Rules

Another Example with multiple usage of the chain rule

Compute the Derivative

: d 4 z2
e Chain P (sm (36 = 1))

First use the chain rule with f(u) = u*,u = sin (3@$2 - 1)

4sin® <3e”ﬁ2 - 1) % (sin <3e”ﬁ2 - 1))
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Differentiation: Applying the Rules

Another Example with multiple usage of the chain rule

Compute the Derivative

7 d 4 z2
e Chain P (sm (36 = 1))

First use the chain rule with f(u) = u*,u = sin (36952 - 1)

4sin® <3eﬂﬁ2 - 1) % (sin <3eﬂﬁ2 - 1))

Then use the chain rule with f(u) = sinu,u = (36‘”2 — 1)

4sin® <3e“”2 — 1) coS (36902 — 1) % (36x2 — 1>
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Differentiation: Applying the Rules

Another Example with multiple usage of the chain rule (continued)

Example (...continued)

The Chain
Rule Then use the chain rule with f(u) = 3e* — 1,u = 2

4sin® (3¢ — 1) cos (3¢ — 1) (3¢ x 22) .
Tidying up a little yields the final result

% (sin4 (3&2 _ 1)) — 24ze® sin® (3612 _ 1) cos (36902 _ 1).

<
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Differentiation: Applying the Rules

Extra Example (2009 Exam Question)

Compute the following derivative

. dy e?
The Chain — for = Sin .
Rule dz Y ( X )

LY wy 3




Differentiation: Applying the Rules

Extra Example (2009 Exam Question)

Compute the following derivative

. dy e?
The Chain — for = Sin .
Rule dz Y ( X )

This problem requires the chain rule with

: df
f(u) = sinu, T = oS
e du et e”
u = — == — ———

x dx x x?

LY wy 3




Differentiation: Applying the Rules

Extra Example (2009 Exam Question)

Compute the following derivative

. dy e?
The Chain — for = Sin .
Rule dz Y ( X )

This problem requires the chain rule with

: df
f(u) = sinu, T = oS
e du et e”
Y = ——, —=——— ==
el i e

Hence
dr x x x2 )

LY-o




Differentiation: Applying the Rules
Proof of Rule 6

The Chain
Rule

y=f(x), then z=f"'(y),

where f~1 is the inverse function of f
Please note that f=1 # 1/f!

Now differentiate this using the chain rule
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Differentiation: Applying the Rules

Proof of Rule 6 (continued..)

Proof (continued).

Differentiating w.r.t x using the chain rule

d

1 = d—y(f—l) X

The Chain
Rule

dy _ dwdy

dr~ dyds (since z=f1)

28 /435



Differentiation: Applying the Rules

Proof of Rule 6 (continued..)

Proof (continued).

o Differentiating w.r.t x using the chain rule
Rule
d ,._ dy dxdy . _
1 — DNy 2=—"-"- =f!
Qy (f71) x dr~ dyds (since z=f"")

which yields the result

dz 1
d_ .
dy ¢

28 /435



Differentiation: Applying the Rules

Application of Rule 6

Rule 6 tells us how to deal with inverse functions:

The Chain
1

d
Rule Find a4y when y=sin""z, —

<y <
dx =¥=

o[ N
po| N
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Differentiation: Applying the Rules

Application of Rule 6

Rule 6 tells us how to deal with inverse functions:

The Chain
1

d
Rule Find a4y when y=sin""z, —
dx

r = siny, — = cosy,

29 /435



The Chain
Rule

Differentiation: Applying the Rules

Application of Rule 6

Rule 6 tells us how to deal with inverse functions:

. dy
Find —=
in g

when =sin" 'z —E< <z
y_ 9 2_y_2
i e cos

= siny, —— =cosy,

dy

11

=
ﬁ COs Y

1 1
+/1—siny +VI-a?
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The Chain
Rule

Differentiation: Applying the Rules

Application of Rule 6 (continued...)

Example
So we have

—sinly, —S<y<=
Yy = ) 5 = Y= 9’
and d |
== (1)
dy  cosy
which lead to
dy 1
dr  +y1—22

If -5 <y <7, then cosy > 0 and so S—g > 0 by equation (1).
Hence taking the positive square root gives

dy 1

dr  1—gz2
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Differentiation: Applying the Rules

Another Application of Rule 6

. o d
The Chain Find ) when y = cosh™!z
dx

Rule
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Differentiation: Applying the Rules

Another Application of Rule 6

: . dy -1
The Chain Find P when y =cosh™ " x

d
x = coshy, —x:sinhy,
dy
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Differentiation: Applying the Rules

Another Application of Rule 6

: . dy -1
The Chain Find P when y =cosh™ " x
d
x = coshy, &r = sinh y,
dy
dy 1 1
de g_z ~ sinhy

1

1
++/cosh?y — 1 RV
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Differentiation: Applying the Rules

Another Application of Rule 6 (continued..)

We Can Check This Result by Differentiating

We know that

;EleeChain Yy = cosh 1z = =+ log ($ +x? — 1).
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Differentiation: Applying the Rules

Another Application of Rule 6 (continued..)

We Can Check This Result by Differentiating

We know that
;EleeChain Yy = cosh 1z = =+ log ($ +x? — 1).
Thus by applying the chain rule

dy +1 [1 1]

- = (2 _ 1) 2
dr 422 -1 1—1—2(:1: 1) 2

+1 x
e T
w+\/1‘2—1{ \/x2—1]

+1

22— 1
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Differentiation: Applying the Rules

Another Application of Rule 6

Example (Differentiating tan—! z)

The Chain
Rule




Differentiation: Applying the Rules

Another Application of Rule 6

Example (Differentiating tan—! z)

d
Find — (tan™'z).
The Chain dx ( )
Rule
First let y = tan~! 2 and so = = tany.
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Differentiation: Applying the Rules

Another Application of Rule 6

Example (Differentiating tan—! z)

d
Find — (tan™'z).
The Chain dx ( )
Rule

First let y = tan~! 2 and so = = tany.

Then
d_x . i sin y
dy  dy \cosy

cos?y +sin’y

cos?y
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Differentiation: Applying the Rules

Another Application of Rule 6

Example (Differentiating tan—! z)

d
Find — (tan™'z).
The Chain dx ( )
Rule

First let y = tan~! 2 and so = = tany.

Then
d_x . i sin y
dy  dy \cosy

cos?y +sin’y

cos?y

dy 1 1 1

de ~ sec?y 1+tanly 1442
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Differentiation: Applying the Rules

Logarithmic Differentiation

Sometimes it's useful to take logs before differentiating.

Find d
The Chain (ijw) )

Rule =
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Differentiation: Applying the Rules

Logarithmic Differentiation

Sometimes it's useful to take logs before differentiating.

Find 5
e L o).
First let y = 2%, then Iny = lna” = zInx.
% (lny) = % (xlnx)
1
1dy = lnz+ L
ydx x
d
% = y(1+Inx)
d
ﬁ = z°(1+Inz). ,

34 /435



The Chain
Rule

Differentiation: Applying the Rules

Logarithmic Differentiation, Another Example

Differentiate the function y = 10® with respect to z.

y = 10", . Iny==zIn10.

and so in differentiating w.r.t x

1
14y o,
y dx
dy
— = 10*In10.
dx =
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Differentiation: Applying the Rules

More Examples of Logarithmic Differentiation

_$2COSZIJ B x?
y= sin 2z -~ 2sinx /)

Take logs and differentiate with respect to x to give

The Chain
Rule
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Differentiation: Applying the Rules

More Examples of Logarithmic Differentiation

_$2COSZIJ B x?
y= sin 2z -~ 2sinx /)

Take logs and differentiate with respect to x to give

The Chain
Rule

Iny = Inz?+Incosz — Insin2zx
1dy = 2z sinz 508 2z
yder 22 cosx sin 2z

d 2
= y(——tanx—2cot2m)
dz 0

2
2
% = a:.cosx — —tanxz — 2cot 2z
dx sin2x \z

36 /435



Implicit Differentiation

Differentiate the Equation of a circle

Suppose that 22 + 32 =1

The Chain
Rule
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Implicit Differentiation

Differentiate the Equation of a circle

Suppose that 22 + 32 =1

The Chain
Rule e This is the equation of a circle, centre O radius 1.
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Implicit Differentiation

Differentiate the Equation of a circle

Suppose that 22 + 32 =1

The Chain
Rule e This is the equation of a circle, centre O radius 1.

e y is an implicit function of z.
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Implicit Differentiation

Differentiate the Equation of a circle

Suppose that 22 + 32 =1

The Chain
Rule e This is the equation of a circle, centre O radius 1.

e y is an implicit function of z.

e To find g—g we take % of all terms.
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Implicit Differentiation

Differentiate the Equation of a circle

Suppose that 22 + 32 =1

The Chain
Rule e This is the equation of a circle, centre O radius 1.

e y is an implicit function of z.

e To find g—g we take % of all terms.

d oy, d oy d
dx<x)+d:c(y)_dx(1)’
i.e d d
vy _ A )

37 /435



Implicit Differentiation

Checking the previous result

Checking this this result

The Chain y2:1—332 S y=+v1-—22
Rule

Differentiating the positive square root yields

dy 1 oy —1
g —2rx = (1—2%)"2
o xxz( z?)
. —X N X
V1 — 2 y

Note that if we take the negative square root, i.e.
y = —V1 — 22, then we get the same result.
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Implicit Differentiation
Another Example

If the equation of a curve is given by

;EleeChain 1;2 + 31;y + y2 = 77

find % in terms of x and y.
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Implicit Differentiation
Another Example

If the equation of a curve is given by

;EleeChain 12 + 31‘?] _'_ y2 — 77
find % in terms of x and y.

We proceed by differentiating each term w.r.t. x

d d
2z + 3y + 322 4 2y—y = 0 «— (Common source of error)
dz dx
dy 2z +3y

"€ e 3z + 2y’
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The Chain
Rule

Differentiation: Computing Higher Derivatives

A Simple Example of Computing Higher Derivatives

Having found % we can differentiate again to get % etc.
y = 2°
d
d—y = 62°
x
d2
d—g — 6 x 52t = 302
55
d3
d—'g — 30 x 42% = 12023
x
d4
d—xﬁ = 36022
d5
d—;; — 720z
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Differentiation: Computing Higher Derivatives

A Simple Example of Computing Higher Derivatives (continued)

The Chain
Rule




Differentiation: Computing Higher Derivatives

A Simple Example of Computing Higher Derivatives (continued)

The Chain
Rule

y

As a matter of convenience sometimes the following notation is
used for higher derivatives

"y _ o)
dzn y
d*y d’y
and so T2 = y(2), 18 = y(3), etc
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Differentiation: Computing Higher Derivatives

Another Example of Computing Higher Derivatives

e Chain | d d2
'Fl;nleCh Yy = sin 2$, find ﬁ, d_xiga y(3) .
d
% = 2cos2z,
d2
d_xz = —4sin2x
y(?’) = —8cos2x
y(4) = 16sin2z
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Differentiation: Computing Higher Derivatives

Another Example of Computing Higher Derivatives (continued..)

Rule In fact we can write a general formula as

The Chain

2cos2x n=4p+1

m) _ ) —2"sin2x n=4p+2

—2"cos2x n=4p+ 3
2"sin2x n=4p

Y

Forp=20,1,2,...
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Differentiation: Computing Higher Derivatives

Another Example of Computing Higher Derivatives

The Chain Example

Rule 9 qr 5
— T H
If y = e“*, what is den /

d
d_y _ y(l) = 2¢%%, y(2) = 4¢%® y(s) _ Re2w
Zz
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Differentiation: Computing Higher Derivatives

Another Example of Computing Higher Derivatives

The Chain Example

Rule 9 qr 5
— T H
If y = e“*, what is den /

d
d_y _ y(l) = 2¢%%, y(2) = 4¢%® y(s) _ Re2w
Zz

y(n) — 9n2T

44 / 435



Differentiation: Computing Higher Derivatives

Computing the nth derivative of a product

Suppose that we have a function defined as a product, i.e.
given by
The Chain y=wuv, where u=u(z),v=uv(x).

In general if y = wv then applying the product rule gives
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Differentiation: Computing Higher Derivatives

Computing the nth derivative of a product

given by

The Chain y=wuv, where u=u(z),v=uv(x).
ule

In general if y = wv then applying the product rule gives

= Wy + up®

Suppose that we have a function defined as a product, i.e.
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Differentiation: Computing Higher Derivatives

Computing the nth derivative of a product

Suppose that we have a function defined as a product, i.e.
given by

The Chain y=wuv, where u=u(z),v=uv(x).
ule

In general if y = wv then applying the product rule gives

Do
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Differentiation: Computing Higher Derivatives

Computing the nth derivative of a product

Suppose that we have a function defined as a product, i.e.
given by

The Chain y=wuv, where u=u(z),v=uv(x).
ule

In general if y = wv then applying the product rule gives

u® + 3u(2)v(1) +3uMo® 4 4p®),

_l’_

Notice that the binomial coefficients are appearing.
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Differentiation: Computing Higher Derivatives

Computing the nth derivative of a product

In fact...

R (”) O ICIN (”)u<n—2>v<2> L
The Chain 1 2
Rule
+ ( " 1)u(1)v(”_1) + uv(™
n —

where

(1) ="

Equation 2 is known as Leibnitz's formula for differentiating a
product n times.
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Differentiation: Computing Higher Derivatives

Example Demonstrating an Application of Leibnitz's rule

"y
| If y=u=xe*, whatis P
The Chain . . _ X i
Rulte Using Leibnitz's formula with v = z,u = €* gives
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Differentiation: Computing Higher Derivatives

Example Demonstrating an Application of Leibnitz's rule

n
If y=uze*, whatis &Y 4

dan

The Chain
Rulte Using Leibnitz's formula with v = z,u = €* gives

n n—1
m — 4" ey (D 4T
/ Tz (%) + (1) dz () dzn—1 (e%)

0

d2 dn—2
" (€%) +0

T R e
= ze¥+n.le”

e’(z +n).
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Differentiation: Computing Higher Derivatives

Second Example Demonstrating Leibnitz's rule

. %
Let y =a%sinz. Find —l'z
The Chain dz
Rule
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Differentiation: Computing Higher Derivatives

Second Example Demonstrating Leibnitz's rule

d17y

17"
The Chain dz
Rule

Let y =a%sinz. Find

When applying Leibnitz's rule, for the function v you should
choose v such that when differentiated a relatively few number
of times it becomes zero (if this is possible). Hence we choose

u=sinz,v = 2.

dz17 dz16 (

17\ . d¥°
+ ( )d15(81nw)+0

17 16
y17 = g2 d (sinzx) + (17) 20— d sin )
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The Chain
Rule

Differentiation: Computing Higher Derivatives

Second Example Demonstrating Leibnitz’s rule (..continued)

Example (..continued)

Now

an . 7 d1s
116 (sinx) = sinz, 7 (cosx), EPSTS (—cosz).
17.1
y(m = z?cosx + 17.2zsinz + %.2. (—cosz)

= z?cosx + 34w sinz — 272 cos .
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Differentiation: Parametric Differentiation

Description of Parametric Equations

e O In many applications a function is referenced by a a parameter,
e Chain . _—
Rule i.e.

r =cos2t, y=sint,

where the parameter ¢ = time (for example).
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Differentiation: Parametric Differentiation

Description of Parametric Equations

e O In many applications a function is referenced by a a parameter,
e Chain . _—
Rule i.e.

r =cos2t, y=sint,

where the parameter ¢ = time (for example).

e For a given value of ¢, both z and y may be found.
e This implies that we can generate a curve y = f(x).

50 /435



Differentiation: Parametric Differentiation

Example of Parametric Differentiation

If a curve is defined parametrically as

: _ d
e Chain xr =cos2t, y=sint, thenfind —= and —3.

dz dz?

V.
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Differentiation: Parametric Differentiation

Example of Parametric Differentiation

If a curve is defined parametrically as

) : d d?
e Chain x =cos2t, y=sint, then find ﬁ and d_:vg

d d

Y _ —2sin2t and & cost

dt dy

dy
Thus _dy(t) = @ﬁ =dL
dx dt dx dz
—— dt
Chain Rule

dy —2sin2¢ 4 sin tecost .
= = — = —4sint
dzx cost cost —

V.
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Differentiation: Parametric Differentiation

Example of Parametric Differentiation (..continued)

What about
: d?y 2 d?y /d%z
R da2 de2/ dr
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Differentiation: Parametric Differentiation

Example of Parametric Differentiation (..continued)

What about

: d?y 2 d?y /d%z
Rue da? a2/ de?
By definition
d?y d /dy d
— = — | =] =—(—4sint
daz? dz (dx) dx( sint)
d ) dt :
= = (—4sint) P (Chain Rule)
_ cost 4cost
e cost
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Differentiation: Parametric Differentiation

Second Example of Parametric Differentiation

d d?
The Chain y=3sinf —sin®f, z =cos®d, Find —y, Y
Rule dzx

In this example 6 is the parameter.
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Differentiation: Parametric Differentiation

Second Example of Parametric Differentiation

2
Uiz ety y=3sinf —sin®#, x =cos®d, Find j—i, %
In this example 6 is the parameter.
dy  dy ydz  Fcos® — Fsin? 6 cosf
de  do/ do —3cos2fsinf
_ cosf (1 — sin? 9) _ COSHM
N —cos2fsinf ~ —ces*@sind
cos 6
= ———— = —cotf
sin 6
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Differentiation: Parametric Differentiation

Second Example of Parametric Differentiation (..continued)

Example
The Chain

Rule
d?y d d dé
@ = a(—COtG):@(—COtG)a
1
= — (_sin29) / (—3 COSQQSiHQ)
L 1
B 3cos2fsin® 6’ |
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Differentiation: Parametric Differentiation

Differentiation of Cotangent

Note that in the last example we used the result that

— (cotf)) = ——— = — cosec? 0,

Rie " which is easily proved using the quotient rule.
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Differentiation: Parametric Differentiation

Differentiation of Cotangent

Note that in the last example we used the result that

1
— (cot @) = ———— = —cosec?
do ( ) sin” 0 ’
R which is easily proved using the quotient rule.

d d [cosf
@(cotﬁ) B @(sinQ)

—sin%60 — cos? 0

sin® 0
1
= —— = — cosec? 6.
sin” 6
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Applications of Differentiation

Relating the Derivative to the Gradient/Slope of a Tangent to a Curve

. dy
Meaning of 327

Applications
of
Differentiation
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Applications of Differentiation

Relating the Derivative to the Gradient/Slope of a Tangent to a Curve

. dy
Meaning of 327

e Rate of increase of y w.r.t x

Applications
of
Differentiation

56 /435



Applications of Differentiation

Relating the Derivative to the Gradient/Slope of a Tangent to a Curve

Meaning of fl—?;?
e Rate of increase of y w.r.t x
e or the slope of the tangent to the curve y = f(x) at

Y

Applications
of
Differentiation
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Applications of Differentiation

Defining the Derivative from First Principles

Slope of the chord PQ

_ Changeiny  f(z+0x) — f(z)

~ Change in = ox

Applications
of
Differentiation

and as dx — 0, chord — tangent.

Therefore: Slope of the tangent at x

dz  sz2—0 ox

)

Uy (faron o)
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Applications of Differentiation

Differentiating from first principles example

Applications
of
Differentiation
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Applications
of
Differentiation

Applications of Differentiation

Differentiating from first principles example

Lety = f(x)

dy

dx

. (($+5as)2 —932)

dx—0 ox
. <,ZZ—|— 220z + (6z)? —%)
= lim
ox—0 ox

= lim (2z + dz)

= 2.

6z—0
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Applications of Differentiation

Differentiating from first principles example

Applications
of
Differentiation
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Applications of Differentiation

Differentiating from first principles example

Applications
of
Differentiation
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Applications of Differentiation

The Maxima and Minima of a Function

Consider the following diagram...

Applications
of
Differentiation

Figure: Plot of y = f(x)
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Applications of Differentiation

Defining Stationary/Critical Points

First Observe that
® If f’(a) <0 then f is decreasing near a,
@ If f/(b) > 0 then f is increasing near b.

Applications
of
Differentiation
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Applications of Differentiation

Defining Stationary/Critical Points

First Observe that
® If f’(a) <0 then f is decreasing near a,
@ If f/(b) > 0 then f is increasing near b.

Stationary or critical points are points such that g—g = 0.

Applications
of
Differentiation
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Applications of Differentiation

Defining Stationary/Critical Points

First Observe that
® If f’(a) <0 then f is decreasing near a,
@ If f/(b) > 0 then f is increasing near b.

Stationary or critical points are points such that g—g = 0.

Applications
of
Differentiation

They correspond to either
® Maxima
® or Minima

® or points of inflection.
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Applications of Differentiation
The Different Types of Critical Point

Applications
of
Differentiation

Point of Inflection

Min T

Figure: Plot of y = f(x). Note that the slope of the tangent is zero
at the critical points
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Applications
of
Differentiation

Applications of Differentiation
Describing the Second Derivative Test for Classifying a Critical Point

Second Derivative Tests for Max or Min.

2 . .
3‘7'3 Classification

>0 | = Minimum

<0 | = Maximum

1

o|lo| ol|gE

=0 | = Inconclusive

Table: Using second derivatives to classify critical points

'1n which case we use a different test!
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Applications
of
Differentiation

Applications of Differentiation

How does the Second Derivative Test Work?

point:

> T

Figure: Plot of y = f(z) containing a minimum point

How do these tests work? Consider a function with a minimum
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Applications of Differentiation

How does the Second Derivative Test Work (..continued)?

e The change in the slope of the tangent going through the
minimum at @ (i.e. P — @Q — R is from negative to
positive.

Applications
of
Differentiation
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Applications of Differentiation

How does the Second Derivative Test Work (..continued)?

e The change in the slope of the tangent going through the

minimum at @ (i.e. P — @Q — R is from negative to
positive.

Applications
of
Differentiation

e i.e The slope of the tangent g—g is increasing.
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Applications of Differentiation

How does the Second Derivative Test Work (..continued)?

e The change in the slope of the tangent going through the

minimum at @ (i.e. P — @Q — R is from negative to
positive.

Applications
of
Differentiation

e i.e The slope of the tangent g—g is increasing.

i.e
d d /dy
< (Slope of e
& (Slope of tangent) P <dw> > 0,
d2
d_lg >0 at Q.

65 /435



Applications of Differentiation

dy

What happens when 3% =0 and

2y _ 7
d 2 — Y7

da

2 . .
If % =0 and 3732/ = 0 then we may still have a maximum,
minimum, or a point of inflection.
Applications

Example
of

Differentiation dy
y=ax = =4z°
dz

Stationary point at z = 0.

d2
T3 =127=0 at z=0.
i
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Applications of Differentiation

dy

What happens when 3% =0 and

42 y
d“y _ 02
d z2 07

d

Example (..continued)

But clearly z = 0 is a minimum from the graph of y = z*

Applications
of
Differentiation

e So clearly another test is required

4
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Applications of Differentiation

dy

What happens when 3% =0 and

'121/
d“y _ 02
d z2 07

d

Example (..continued)

But clearly z = 0 is a minimum from the graph of y = z*

Applications
of
Differentiation

e So clearly another test is required

e Another test for max or min is to construct a sign diagram
of %11
x

4
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Applications of Differentiation

dy

What happens when 3% =0 and

d?y _ 07
dz2 — ¥

Example (..continued)

But clearly z = 0 is a minimum from the graph of y = z*

Applications
of
Differentiation

e So clearly another test is required

e Another test for max or min is to construct a sign diagram
of %11
x

e This method always works, even if % = 0.

4
67 /435



Applications of Differentiation

Classifying the turning point with a sign diagram

Example (..continued)

In this example recall that y = z*, and d—y = 422 = 0 when
z=0.

Applications dy _ dy —
Aprlcat =422 <0 | dy _ 493 > 0
Differentiation |
Slope Tangent Negative Slope Tangent Positive

i.e \ i.e /

Hence the point £ = 0 must be a minimum.
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Applications of Differentiation

Stationary Points Example

Find all the stationary points and their nature for

y=f(z) =3z — 423 + 1.

Applications

A Calculating the first derivative yields
dy 3 2 2
— =12z° — 122" =12 —1).
e 7 7 z“(x —1)

At the stationary points

dy_

4, =0 andso 122%(z —1) =0

Stationary points at z = 0, 1.
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Applications of Differentiation

Stationary Points Example Continued...

Example (..continued)

Now apply the second derivative test. Calculating the second

derivative yields
d2
Y _ 3622 — 24a.

Applications 2
o dx

Differentiation
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Applications of Differentiation

Stationary Points Example Continued...

Example (..continued)

Now apply the second derivative test. Calculating the second

derivative yields
d?y
- —= = 362> — 24z.
Applications 2
o’ dx
Differentiation

Calculating the value of the second derivative at the stationary
points gives

d2
At z=1 —5=36-24>0 ..min.
T
d2y
At z=0 EPe) =0 .. Use different test.
T
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Applications of Differentiation

Stationary Points Example Continued...

Example (..continued)

For the point x = 0, we construct a sign diagram for 32...

Applications
of
Differentiation
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Applications of Differentiation

Stationary Points Example Continued...

Example (..continued)

For the point x = 0, we construct a sign diagram for 32...

Applications | |
of
Differentiation | |
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Applications of Differentiation

Stationary Points Example Continued...

Example (..continued)

For the point x = 0, we construct a sign diagram for 32...

Applications | |
of

Differentiation | |

Therefore
z =1 is a Minimum
x = 0 is a point of inflection.
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Applications of Differentiation

Exam Question (2007)

A curve is given by

ind d a2y
Find 37 and T2

Applications

of
Differentiation

Where does the curve have a critical (stationary) point? Is it a
maximum, minimum or point of inflection? Justify your answer.

72 /435



Applications of Differentiation

Exam Question (2007)

A curve is given by

Find 42 and 5.
Applications

MU  \Where does the curve have a critical (stationary) point? Is it a
maximum, minimum or point of inflection? Justify your answer.

Solution: First calculate the derivatives using the chain rule...

dy et —te? e f(1-1t)
de 2t 2
d?y o et et et
w T Tw et
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Applications of Differentiation

2007 Exam Question (..continued)

Note that j—x = 0 when ¢t =1, and is the only possible turning

point. For the second derivative

d?y et e_/_l e‘f
-7 =— — 0
Applications d[[,‘2 t=1 4 4 + 4 > ’

of
Differentiation

and hence the stationary point is a minimum.

73 /435




Applications of Differentiation

2007 Exam Question (..continued)

Note that g—g = 0 when ¢t =1, and is the only possible turning
point. For the second derivative

d?y et e‘f e‘f
-7 =— — 0
Applications d[[,‘2 t=1 4 4 + 4 > ’

of
Differentiation

and hence the stationary point is a minimum.

To find the cartesian coordinates of the point, substitute ¢t = 1
into the parametric equations to give
y=1lxel=el z=12=1

)

Hence the coordinates of the stationary point are (1,e7!).
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Applications of Differentiation
Curve Sketching

e This section describes a recipe for curve sketching

Applications
of
Differentiation
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Applications of Differentiation
Curve Sketching

e This section describes a recipe for curve sketching

Avplications e You can use graphics calculator as a guide, but you should
o work through the following recipe in order to accurately
sketch the curve.
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Applications of Differentiation
Curve Sketching

e This section describes a recipe for curve sketching

Avplications e You can use graphics calculator as a guide, but you should
o work through the following recipe in order to accurately
sketch the curve.

e In an exam you will need to show all the following steps of
your working.
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Applications of Differentiation
Curve Sketching

This section describes a recipe for curve sketching

e You can use graphics calculator as a guide, but you should
work through the following recipe in order to accurately
sketch the curve.

Applications
of
Differentiation

e In an exam you will need to show all the following steps of
your working.

e First lety = f(x)

74 /435



Applications of Differentiation

Recipe for Curve Sketching

@ Where is f defined? (Or put another way, where is it
undefined?). Typically we can sometimes get
vertical asymptotes.

Applications
of
Differentiation
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Applications of Differentiation

Recipe for Curve Sketching

@ Where is f defined? (Or put another way, where is it
undefined?). Typically we can sometimes get
vertical asymptotes.

® Is f odd or even or neither?

Applications
of
Differentiation
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Applications of Differentiation

Recipe for Curve Sketching

@ Where is f defined? (Or put another way, where is it
undefined?). Typically we can sometimes get
vertical asymptotes.
® Is f odd or even or neither?
©® Find where f(x) = 0 (if possible), i.e. where the curve
Spplications cuts the z axis.

Differentiation
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Applications of Differentiation

Recipe for Curve Sketching

@ Where is f defined? (Or put another way, where is it

undefined?). Typically we can sometimes get

vertical asymptotes.
® Is f odd or even or neither?

©® Find where f(x) = 0 (if possible), i.e. where the curve

Spplications cuts the z axis.
Differentiation @ Find the value of f when z =0, i.e. y = f(0), where the
curve cuts the y axis.
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Applications of Differentiation

Recipe for Curve Sketching

@ Where is f defined? (Or put another way, where is it
undefined?). Typically we can sometimes get
vertical asymptotes.
® Is f odd or even or neither?
©® Find where f(x) = 0 (if possible), i.e. where the curve
Spplications cuts the z axis.
Differentiation @ Find the value of f when z =0, i.e. y = f(0), where the
curve cuts the y axis.
@ Find all stationary points and their nature (and the value
of f at such points)

75 /435



Applications of Differentiation

Recipe for Curve Sketching

@ Where is f defined? (Or put another way, where is it
undefined?). Typically we can sometimes get
vertical asymptotes.
® Is f odd or even or neither?
©® Find where f(x) = 0 (if possible), i.e. where the curve
Spplications cuts the z axis.
Differentiation @ Find the value of f when z =0, i.e. y = f(0), where the
curve cuts the y axis.
@ Find all stationary points and their nature (and the value

of f at such points)
® Analyse the asymptotes
i Horizontal asymptotes: What happens to y as x — Fo0?
i If z=ais a vertical asymptote, what happends as z — a*
and z — a”.

NB: Often it is possible to deduce the nature of the turning

. . . 2
point without calculation of g?y. B



Applications of Differentiation

Curve Sketching Example

Example: Sketch the curve y = f(z) = le_l

Applications
of
Differentiation
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Applications of Differentiation

Curve Sketching Example

Example: Sketch the curve y = f(z) = le_l

1: Not defined at z = +1 (i.e vertical asymptotes as x = +1.

Applications
of
Differentiation
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Applications of Differentiation

Curve Sketching Example

Example: Sketch the curve y = f(z) = le_l

1: Not defined at z = +1 (i.e vertical asymptotes as x = +1.
2: f(—x) = f(x), therefore f(x) is even.

Applications
of
Differentiation
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Applications of Differentiation

Curve Sketching Example

Example: Sketch the curve y = f(z) = le_l
1: Not defined at z = +1 (i.e vertical asymptotes as x = +1.
2: f(—x) = f(x), therefore f(z) is even.

AT 3: f(z) #0 Vaz, therefore f(x) never cuts the x axis.

of
Differentiation
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Applications of Differentiation

Curve Sketching Example

Example: Sketch the curve y = f(z) = le_l

. Not defined at z = £1 (i.e vertical asymptotes as x = +1.
f(=x) = f(x), therefore f(x) is even.

. f(x) #0 Vax, therefore f(x) never cuts the z axis.

f(0) = —1, i.e. the curve passes through (0, —1)

Applications
of
Differentiation

2Ny
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Applications of Differentiation

Curve Sketching Example

Example: Sketch the curve y = f(z) = le_l

1: Not defined at z = +1 (i.e vertical asymptotes as x = +1.
2: f(—x) = f(x), therefore f(z) is even.
AT 3: f(z) #0 Vaz, therefore f(x) never cuts the x axis.
piferentaton 4: f(0) = —1, i.e. the curve passes through (0, —1)
5: For the derivative
f(z) = —@;22%1)2 =0 when z=0,

where the nature of the turning point can be determined
from the analysis of the vertical asymptotes, i.e. it will be
shown that z = 0 is a maximum
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Applications of Differentiation

Curve sketching example (..continued)

6i: For the horizontal asymptotes,

As x — o0, f(x)— o0

As x — —o0, f(z)— o0.

Applications
of
Differentiation
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Applications of Differentiation

Curve sketching example (..continued)

6i: For the horizontal asymptotes,

As x — o0, f(x)— o0

As x — —o0, f(z)— o0.

Feiestar 6ii: For the vertical asymptotes, note that as x — 1

Differentiation

As z— 17, f(z) — oo,

As z—17, f(x)— —o0,
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Applications of Differentiation

Curve sketching example (..continued)

6i: For the horizontal asymptotes,

As x — o0, f(x)— o0

As x — —o0, f(z)— o0.

Feiestar 6ii: For the vertical asymptotes, note that as x — 1

Differentiation

As z— 17, f(z) — oo,

As z—17, f(x)— —o0,
and similarly for z — —1

As z— —17,  f(z) = —oo,

As z— —17, f(z)— oo.
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Applications of Differentiation

Curve sketching example (..continued)

We are now in a position to sketch the curve.

Applications
of
Differentiation

Figure: Sketch of y = f(z) = -
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Applications of Differentiation

Graph Sketching: Another Example

Example: Sketch the graph of

s z(l—x)
R 3
V= (3)
We apply the recipe
Applications ]_ NOte that
of 2 z(1—x)
Differentiation y =,
(2—z)(2+x)

and therefore there are vertical asymptotes at x = £2.
Also, for real 1, we require y? > 0, and thus it follows that
y is defined only when
z(1—x)
4 — g2
The RHS of 3 may change sign at z = 0, 1, and possibly
at the position of the vertical asymptotes.

> 0.
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Applications of Differentiation

Example 2 continued

Consider the following diagram of the sign of y?

Applications

of '
Differentiation :

Therefore the graph of y is undefined for

—2<x<0 and 1<zx<2.
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Applications of Differentiation

Example 2 continued

2 g is neither odd nor even, but observe

z(l—x)

Applications — :|:
4 — 22

of
Differentiation

and the =+ sign indicated that the graph should be
symmetric about the horizontal z axis.
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Applications of Differentiation

Example 2 continued

2 g is neither odd nor even, but observe

z(l—x)

Applications — :|:
4 — 22

of
Differentiation

and the =+ sign indicated that the graph should be
symmetric about the horizontal z axis.

3 y=0when z=0,1.
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Applications of Differentiation

Example 2 continued

2 g is neither odd nor even, but observe

z(l—x)

Applications — :|:
4 — 22

of
Differentiation

and the =+ sign indicated that the graph should be
symmetric about the horizontal z axis.

3 y=0when z=0,1.
4 =0 .. y=0 (seeabove).
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Applications of Differentiation

Example 2 continued

dy ; i dy? d? _ 9, dy
5 4 is stationary when 3 is, since - = 2y .

d_y2 _ (4 —22)(1 - 2z) — (v — 2?)(—22) _0
dz (4 —x2)?

Applications
of
Differentiation
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Applications of Differentiation

Example 2 continued

dy ; i dy? d? _ 9, dy
5 4 is stationary when 3 is, since - = 2y .

d_y2 _ (4 —22)(1 - 2z) — (v — 2?)(—22) _0
dz (4 —x2)?

Applications

- For this to be zero the numerator must be zero. Therefore
Differentiation simplifying the numerator leads to

e —8x+4=0 .. x=4+2V/3 (=0.54,7.5).
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Applications of Differentiation

Example 2 continued

5

Applications
of
Differentiation

dy | i 2 e cince W2 — 9,4y
1, Is stationary when - is, since ~~ = 2y 3=.

d_y2 _ (4 —22)(1 - 2z) — (v — 2?)(—22) _0
dz (4 —x2)?

For this to be zero the numerator must be zero. Therefore
simplifying the numerator leads to

e —8x+4=0 .. x=4+2V/3 (=0.54,7.5).

Rather than calculating the second derivative, we can

deduce the nature of these turning points from the

information regarding the behaviour near the horizontal
asymptotes (Calculation of the second derivative is quite
tedious).
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Applications of Differentiation

Example 2 continued

6i To figure out the behaviour of the behaviour as z — Fo0,
write

2 -3
e (4)
I-=
X
AL and using the geometric series
Differentiation
1 2
——=1+4z+2"+..., for |z] <1,

1—=z

equation (4) can be approximated as (for large |z|)

1 4 1
2
~|(1—-— 1+—+...)]~1—— 5
y ( m>(+x2+) = (5)

which is valid for |z| — oc.
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Applications of Differentiation

Example 2 continued

As = — o0, y— 17 (from below)

Applications As z— —oco, y— 1T (from above)
of
Differentiation

In addition, there are there are mirror images (see 81) of this
horizontal asymptote, i.e. at y = —1.
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Applications of Differentiation

Example 2 continued

As = — o0, y— 17 (from below)

Applications As z— —oco, y— 1T (from above)
of
Differentiation

In addition, there are there are mirror images (see 81) of this
horizontal asymptote, i.e. at y = —1.

6ii To get the behaviour near the vertical asymptotes it is
simplest(in this case) to find where the curve cuts it's
horizontal asymptote, i.e. set 4> =1
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Applications of Differentiation

Example 2 continued

This implies:
‘ ‘ J

Applications

of
Differentiation

Figure: Plot of the upper branch of f(x) for z < —2
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Applications of Differentiation

Example 2 continued

Applications
of
Differentiation

Figure: Plot of the upper branch of f(z) for 3 <z < 9. The
minimum point is at x =4 + 2v/3 = 7.5.
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Applications of Differentiation

Example 2 continued

Note that there are also turning points at = 4 — 21/3, and
when z =0,1,y> = 0.
Thus the final plot is

Applications o
of }
Differentiation

Figure: Plot of the curve y = f(x)
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Applications of Differentiation

Equations of Tangent and Normal

Example: Find equations of the tangent and normal to y = 2>

atz = 1.

Applications
of
Differentiation
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Applications of Differentiation

Equations of Tangent and Normal

Example: Find equations of the tangent and normal to y = 2>

atz = 1.

First find g—g, recalling that g—g = slope of the tangent.
Applications d d
of gy _ 2x, .. & =2
Differentiation dx dx r=1

Also, at z = 1 we have y = 1. Therefore using
y—y=m(x—x)

where 1 = 1,41 = 1 and m = 2, the line through (1, 1) with
slope 2 has equation
y=2z—1.
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Applications of Differentiation

Equations of Tangent and Normal

The normal is perpendicular to the tangent. Therefore

-1 1
Sl f N | = =——.
ope of orma Slope of Tangent 2

Applications
of

e The normal is the line through (1, 1) with slope = —1/2.
Therefore using
y—y1 =m(z— 1)

with 21 = 1,y; = 1 and m = —1/2 yields the equation for the

normal as
1 n 3
= ——x+ —.
Y= 7577y
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Applications of Differentiation

Sketches of the Tangent and Normal

Applications
of
Differentiation

(1.0) (1,0) (3,0)

Figure: Plot of the Tangent and Normal to the Curve

90 /435




Applications of Differentiation

Parametric Example

Example: Find equations of the tangent and normal to the
curve given by

y=t> z=t2+1 at t=1.
For this we use parametric differentiation

ications d
ﬁfep' t” %:ﬁ:ﬁzg at t=1
Differentiation da:' dd._ﬂtf,’ 3t2 3 .

Also at t =1, (z,y) = (2,1).

The tangent is the line through (2,1) with slope 2, i.e.
- 2( 2, 2 1
Y =3 x , .oy = 3:E 3

The normal has slope —%, and thus it's equation is

3 3
—1=—= —92 . = —— 4.
Y 2(:r ), .y 2$+
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Hyperbolic Functions: Outline of Topics

@ Introduction to Hyperbolic Functions

@ Inverse Hyperbolic Functions

@ Hyperbolic Identities
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Definitions of Hyperbolic Functions

Introduction

EMUMEN  Definitions of Hyperbolic Functions

. et —e
sinhz =
2
eCB +e—CC
coshy = ———
2
e —e % sinh z
tanhz = =

et +e % coshz’
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Graphs of Hyperbolic Functions

Recall that

Introduction AS r — 00, e:l? — OO and e_x — 0
to Hyperbolic

Functions

1 Ify =coshz = HTE_
cosh (0) = 1.
Also note that
—z 4 o—(-2)
y = cosh (—z) = % = coshzx

Therefore the curve is symmetrical about the y axis (even
function).
Also, as ¢ — oo,y — %ez — Q.
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Introduction
to Hyperbolic
Functions

et—e”

2 Ify =sinhz = “=—,

Also note that
e — @

y = sinh (—z) = —s = —sinhx

Therefore the curve is anti-symmetrical about the y axis
(odd function).
Also for the limits as © — £+ oo

1
As x — oo, y—>§em—>oo
1 x

As x — —o0, y—>—§e_ — —00

95 /435



3 For the tanh x function

Introduction

to Hyperbolic T —T 3
[ et —e sinh x
Functions y — tanhx — —
et +e % cosh z
Therefore
tanh (0) = 0.

Also for the limits as x — £oo

xT

As z—o00, y— ——1
eCE

—XT

e
As z— —o00, y—— ——1
e—x
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Introduction

to Hyperbolic Also note that

Functions
sinh (—x)
cosh (—x)

sinh x

tanh (—z) =

cosh x
= —tanhux.

Therefore tanh x is an odd function.
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Introduction
to Hyperbolic
Functions

sinh(0) ——

tanh(0) -----

-10
-10

Figure: Plots

-5 0 5 10

of the Three Main Hyperbolic Functions
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Comparison to Complex sines and cosines

Recall from complex number theory that

Introduction

to H boli 1 . .
Farctone e¥ = cosz+isinz (6)

)
Il

cos (—z) +isin (—z)
= cosz —isinz (7)
Adding equations (6) and (7) gives

2cosz =e% 4+ e~

OR
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Comparison to Complex sines and cosines

continued

Similarly subtracting equation (7) from equation (6) gives

Introduction

to Hyperbolic

. _ iz —iz
Functions 2i SiInz =e” —e€

OR )
. -1z sinhiz
sinz = =

2i i
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Comparison to Complex sines and cosines

continued

Similarly subtracting equation (7) from equation (6) gives

Introduction

roduction o . .
Pk 2isinz = e” —e™”
OR
. 12 _e71® sinhiz
sin z = 5 = —
i i
For example
-1
. e T +e
cosi=—F5— =~ 1.543 > 1(!)

There is a close relationshop between hyperbolic and
trigonometric functions (more to follow later).

100 / 435



Inverse Hyperbolic Functions: sinh™! z

1 Suppose that
y=sinh~ 'z, -z =sinhy.

Inverse By the definition of sinh
Hyperbolic
Functions

%(ey—e_y)zx@ e —e V=2

Multiplying by e¥ gives
e —1—2zeY =0

(e¥)? —2z(e¥) —1 = 0.

which is a quadratic equation in e¥.
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Inverse Hyperbolic Functions: sinh™! z

2 +V4z? +4
2
Inverse = X + ZL'2 -I‘ 1.

Hyperbolic
Functions

Therefore

eV=x+vVx2+1, o e=z—Varz+1.
Now e¥ > 0 for all y, but
z—vV22+1<0

since
Viz+l>vVe2=z
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Inverse Hyperbolic Functions: sinh™! z

Thus, the second possibility (negative choice) is impossible.

Inverse
Hyperbolic

Functions
e/ =x+Var2+1

OR

y=sinh ™tz =Inz+ Va2 +1.
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Inverse Hyperbolic Functions: cosh™! z

1 Suppose that
y=cosh™tz, - ax=coshy, so z>1.

Inverse By the definition of cosh
Hyperbolic
Functions

%(ey—i-e_y):x —= e+e V=2

Multiplying by e¥ gives
e +1—2zeY =0

or
(e)? — 2z(e?) +1=0.

which is a quadratic equation in e¥.
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Inverse Hyperbolic Functions: sinh™! z

Y 20 + V4?2 —4
N e = —_—
s 5
Hypebalic = 4221,

Functions

which is real since x > 1. Therefore
eyzw—i—m, or e¥=x—+x2-1.
Now e¥ > 0 for all , and
rEVa2-1>0

are both possibilities.
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Inverse Hyperbolic Functions: sinh™! z

Observe that

1 1 x— Va2 -1
e r+vr?—1 B w—i—mxw—\/w?——l
Functions r—+/r2 -1
- 22— (22— 1)
= r—Va22-1
Thus
1
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Inverse Hyperbolic Functions: sinh™! z

y:1n<x+\/x2—1>

or
1
=ln| ——m :—ln(x+\/aj2—1)

B 1= ()

Functions |e
y=:l:ln<x+ Va2 —1)
Y
x

Figure: Plot of coshx. Note that for a given value of y there are two
possibilities for x.
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Hyperbolic ldentities

Definitions

1 1
cothz = (c.f. cotx = > (8)
Hyperbolic tanh xT taIl Xz
Identities 1 1
sechx = (c.f. secr = ) (9)
cosh x cos T
1
cosechx =

1
f. = 1
sinh x (C cosecx sin x) ( 0)
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Hyperbolic ldentities

From the definitions of sinh 2 and cosh x

T —z r -z
coshx—i—sinhxze—;e +€ 26 — o

Hyperbolic
Identities
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Hyperbolic ldentities

From the definitions of sinh 2 and cosh x

e +e T ef—e7

coshz + sinhx = + =e”
2 2
and similarly
Hyperbolic
Identities x —x x —X
. e’ +e e’ —e _
coshz — sinhx = 5 — 5 =e*

(coshz + sinhx) (coshx — sinhz) = e¥e™¥ =1
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Hyperbolic ldentities

From the definitions of sinh 2 and cosh x

e +e T ef—e7

coshz + sinhx = + =e”
2 2
and similarly
Hyperbolic
Identities x —x x —X
. e’ +e e’ —e _
coshz — sinhx = 5 — 5 =e*

(coshz + sinhx) (coshx — sinhz) = e¥e™¥ =1

cosh?z — sinh?®z = 1,
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Hyperbolic ldentities

From the definitions of sinh 2 and cosh x

e +e T ef—e7

coshz + sinhx = + =e”
2 2
and similarly
Hyperbolic
Identities x —x x —X
. e’ +e e’ —e _
coshz — sinhx = 5 — 5 =e*

(coshz + sinhx) (coshx — sinhz) = e¥e™¥ =1

cosh?z — sinh?®z = 1,

which is analogous to cos? x + sin?z = 1.
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Hyperbolic ldentities

So we have
cosh? z — sinh?z = 1.

Hyperbolic
Identities
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Hyperbolic ldentities

So we have
cosh? z — sinh?z = 1.

Now divide the above result by sinh? z to yield

Hyperbolic
Identities COSh2 X 1

. . M
sinh? sinh? z
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Hyperbolic ldentities

So we have
cosh? z — sinh?z = 1.

Now divide the above result by sinh? z to yield

Hyperbolic
Identities COSh2 X 1

. . M
sinh? sinh? z

cosech’® z = coth®z — 1,
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Hyperbolic ldentities

So we have
cosh? z — sinh?z = 1.

Now divide the above result by sinh? z to yield

Hyperbolic
Identities COSh2 X 1

. . M
sinh? sinh? z

cosech’® z = coth®z — 1,

(which is analogous to cosec? § = 1 + cot? f).
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Hyperbolic ldentities

Recall that

coshz +sinhxz = e

coshz —sinhx = e

Hyperbolic
Identities

111 /435



Hyperbolic ldentities

Recall that

coshz +sinhx = e

coshx —sinhx = e
Squaring both of these yields

el cosh? z + 2sinh z cosh z + sinh? z = ¢**
Identities 2.’[

cosh? z — 2sinh z cosh z + sinh?

(11)
(12)
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Hyperbolic ldentities

Recall that

coshz +sinhx = e

coshz —sinhx = e

Squaring both of these yields

Hyperbolic cosh? z 4+ 2sinh  cosh x + sinh? z = ** (11)
Identities
cosh? z — 2sinh  cosh x + sinh? z = ** (12)
and then doing (11) minus (12) yields
6231: _ 6—2:1:
4sinhzcoshz = €** —e™?* <= 2sinhzcoshr = ————

2
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Hyperbolic ldentities

Recall that

coshz +sinhx = e

coshz —sinhx = e

Squaring both of these yields

ypiballe cosh? z + 2sinh z cosh z + sinh? z = ¢**
Identities
cosh? z — 2sinh z cosh z + sinh? z = ¢**

and then doing (11) minus (12) yields

4sinhz coshx = e** —e 2%

2sinh x cosh x = sinh 2%

<= 2sinhxzcoshz =

(11)
(12)

2 _ 6—2:1:

2
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Hyperbolic ldentities

Recall that

coshz +sinhx = e

coshz —sinhx = e

Squaring both of these yields

Hyperbolic cosh? z 4+ 2sinh  cosh x + sinh? z = ** (11)
Identities
cosh? z — 2sinh  cosh x + sinh? z = ** (12)
and then doing (11) minus (12) yields
6231: _ 6—2:1:
4sinhzcoshz = e** —e™?* <= 2sinhzcoshz = —

2sinh x cosh x = sinh 2%

Which is analogous to sin 2z = 2sinz cos
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Hyperbolic ldentities

Also recall equations (11) and (12)

cosh? z + 2sinh z cosh z + sinh? x = ¢**

cosh? z — 2sinh z cosh z + sinh? x = **

Hyperbolic
Identities
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Hyperbolic ldentities

Also recall equations (11) and (12)

cosh? z + 2sinh z cosh z + sinh? x = ¢**

cosh? z — 2sinh z cosh z + sinh? x = **

Adding the above two expressions gives

2cosh?z + 2sinh® x = e?* + =2
Hyperbolic
Identities

therefore dividing by 2 gives

cosh 22 = cosh? z + sinh? z
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Hyperbolic ldentities

Also recall equations (11) and (12)

cosh? z + 2sinh z cosh z + sinh? x = ¢**

cosh? z — 2sinh z cosh z + sinh? x = **

Adding the above two expressions gives

2cosh?z + 2sinh® x = e?* + =2
Hyperbolic
Identities

therefore dividing by 2 gives

cosh 22 = cosh? z + sinh? z

and utilising the identity cosh? z — sinh? 2z = 1 we can deduce
that

cosh2r = 14 2sinh®z
2cosh?x — 1.
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List of Trig and Hyperbolic Identities

Hyperbolic Trigonometric

cothz = 1/tanhz cotx =1/tanx
sechx =1/ coshz secx =1/cosx
cosechz = 1/sinh x secx = 1/sinx
Hyperbolic cosh? x —sinh?z =1 cos? x + sin® = 1
sech?z =1 — tanh®z sec?r =1 +tan’x
cosech? z = coth?z — 1 cosec’z = cot?z + 1
sinh 2z = 2sinh x cosh z sin 2x = 2sinx cosx

cosh 22z = cosh? z + sinh? z | cos2x = cos? x — sin? x

cosh2z =1+ 2sinh? z cos2z =1—2sin?z

cosh 2z = 2cosh?z — 1 cos2r = 2cos?x — 1
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Partial Differentiation: Outline of Topics

@ Introduction to Partial Derivatives

® Higher Partial Derivatives
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Partial Differentiation

Many quantities that we measure are functions of two (or
more) variables

Introduction
to Partial

Derivatives Example: The temperature 1" of a rod heated suddenly from
time t = 0 at one end

Heaﬁ Rod Here

r=0 z=1L
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Partial Differentiation

Many quantities that we measure are functions of two (or
more) variables

Introduction
to Partial

Derivatives Example: The temperature 1" of a rod heated suddenly from
time t = 0 at one end

Heaﬁ Rod Here

r=0 z=1L

Clearly T' depends on:
i The distance x from the heated end
i The time t after heating commenced.
So we write
T =T(x,t)

i.e. T is a function of the two independent variables = and.t.
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Partial Differentiation

Example: (More abstractly), suppose that a function f is
defined as
Introduction f(fl:, y) — x2 + 3y2’

to Partial
Derivatives

then the value of f is determined by every possible pair (z,vy),
so if (z,y) = (0,2) then

£(0,2) = 0% + 3 x 2%
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Partial Differentiation

Example: (More abstractly), suppose that a function f is
defined as
Introduction f(fl:, y) — x2 + 3y2’

to Partial
Derivatives

then the value of f is determined by every possible pair (z,vy),
so if (z,y) = (0,2) then

£(0,2) = 0% + 3 x 2%

Example: Suppose

g(:cl,xg,...,xn)z\/x%+x%+...+x%,

then

g(1,1,..., 1) = V124124 .. 412 = /n.
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Partial Differentiation

Partial derivatives generalise the derivative to functions of two

Ttredlssien or more variables.
to Partial
Derivatives
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Partial Differentiation

Partial derivatives generalise the derivative to functions of two

Ttredlssien or more variables.
to Partial
Derivatives

Suppose f is a function of two independent variables x and y,
then the partial derivative of f(x,y) w.r.t x is defined as

oz~ Jr = A, Az
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Partial Differentiation

Partial derivatives generalise the derivative to functions of two

Ttredlssien or more variables.
to Partial
Derivatives

Suppose f is a function of two independent variables x and y,
then the partial derivative of f(x,y) w.r.t x is defined as

Az—>0 Ax '

o =fo= ]

Similarly, the partial derivative of f(z,y) w.rt y is

3y fy B Aygo Ay ’
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Partial Differentiation

Introduction The partial derivative of f(x,y) w.r.t £ may be thought of as
o rartal the ordinary derivative of f w.r.t x obtained by treating y
as a constant.

Example: For the function f defined by
flaz,y) = 2® + 3y,

find the partial derivative of f w.r.t x by
i Differentiating from first principles

i Differentiating w.r.t x, treating y as a constant.
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Partial Differentiation

i First differentiate from first principles

e of _ e+ Ay - f(ry)
Derivatives - - 1
ox Az—0 Ax
. (z+ Az)? +3y? — (22 + 3y?)
= lim
Az—0 Azx
. 2zAz + (Ax)?
= hm e ——
Az—0 Azx
= 2z
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Partial Differentiation

i First differentiate from first principles

e of _ e+ Ay - f(ry)
Derivatives - - 1
ox Az—0 Ax
. (z+ Az)? +3y? — (22 + 3y?)
= lim
Az—0 Azx
. 2zAz + (Ax)?
= hm e ——
Az—0 Azx
= 2z

i Alternatively, if we differentiate f w.r.t z, treating y as a
constant, we note that the 3y2 term vanishes, hence

of
a—x—2$

as above.
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Partial Differentiation

i Similarly for y, first differentiate from first principles

Introduction 8f _ 1 f(x? y + Ay) - f(:E? y)
to Partial 8_ - 1m A
Derivatives y A’y—)O y
_ oy 22 4+ 3(y + Ay)? — (2% + 3y?)
o Ay—0 Ay
C i 32yAY+ (AY)?)
Ay—0 Ay
= 6y.
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Partial Differentiation

i Similarly for y, first differentiate from first principles

Introduction 8f _ 1 f(x? y + Ay) - f(:E? y)
to Partial a0 - 1m
Derivatives 8y A’y—)O Ay
. 2?24+ 3(y + Ay)? — (2? + 3y?)
= lim
Ay—0 Ay
2
_ o S@yAy -+ (Ay)%)
Ay—0 Ay
= 6y.

i Alternatively, if we differentiate f w.r.t y, treating x as a
constant, we note that the 22 term vanishes, hence

of
ay

as above.

120 /435



Physical Interpretation

Consider the heated rod problem

Introduction
to Partial
Derivatives T

a %—:f is the rate of change
of T with time at

a fixed distance z.

T b g—g is the rate of change
of T with distance x at

a particular instance in time.
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Examples

Suppose
Introduction f(x7 y) = y Sin X + X COS2 y,

to Partial
Derivatives
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Examples

Suppose
Introduction f(x7 y) = y Sin X + X COS2 y,

to Partial
Derivatives

Then for the partial derivative f,

of

- :ycosa:-i—coszy

Ox

where we have treated y as a constant.
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Examples

Suppose
Introduction f(x7 y) = y Sin X + X COS2 y,

to Partial
Derivatives

Then for the partial derivative f,

of

- :ycosa:-l-coszy

Ox

where we have treated y as a constant.

of
dy

= sinz 4 2z cosy(—siny)
= sinx — xsin2y

where we have treated x as a constant.
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Examples

Suppose
—tan-1 (Y
f(x,y)—tan (.’L‘)

then compute f; and f,.

Introduction
to Partial
Derivatives

123 /435



Examples

Suppose

Introduction

flz,y) = tan™! (g)
x
to Partial

Al then compute f; and f,.

Recall that

i (tan_1 u) = ;

du 1+ u?
Therefore, calculating f, (treating y as a constant)

0
fo = 1+1(%)2% (%) - 1+1(%)2 (_%>
of _
ox
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Examples

Introduction
to Partial

Derivatives Similarly, calculating f, (treating x as a constant)

_ 1 oy 1 1
@y (5)=12 (1)? (sc)
i.e 8f_ B .
T
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Practice Examples

Introduction Try to show that if f is defined as

to Partial
Derivatives
fz,y) =sinv/a? + 32,
then f, and f, are given by
fo = e cos Va2 + 7,
/$2 + y2

_ Yy /
fy = WCOS IE2 +y2
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Exam Question 2008

If a function f(z,y) is defined as

_ X
e f(@,y) =l (5)

Derivatives

then find g% and g%.
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Exam Question 2008

If a function f(z,y) is defined as

_ X
e f(@,y) =l (5)

Derivatives

then find g—i and g—;.

Solution: For the x derivative

of x 1y T

For the y derivative

%_%LQ(E)__ z_
oy " alyody \y Yy y
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Example of a function with 3 variables

Suppose f(x,y, z) is defined as
Introduction
to Partial

Derivatives f(x, y, Z) = Z@y COS T
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Example of a function with 3 variables

Suppose f(x,y,z) is defined as

Introduction
to Partial

Derivatives f(x, y, Z) = Zey COS T
then
8—f = —zéYsinz
ox
0
-—i = zeYcosz
y
of y
= eYcosx

dy
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Higher Partial Derivatives

The first partial derivatives may be differentiated again to
obtain second partial derivatives

B P (%) _9f
o Ox \ Ox Ox?
o (0f 0% f
o= oy \oy) ~ oy
0

0% f
Joo = 0xdy

(3)
Jay = g(%):ggx
()
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Higher Partial Derivatives

Example For the function

f=tan™! (f)
Y

Higher Partial where we have shown previously that for the partial derivatives
Derivatives faj and fy'
Y T

fm:xz_,_ym fy:_mQ—i—y?'
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Higher Partial Derivatives

Example For the function

f=tan™! (E),
Y

Higher Partial where we have shown previously that for the partial derivatives
Derivatives faj and fy'
__ Y . *

fm_x2+y2’ fy x2+y2'
Calculate f,, by treating y as constant and applying the
quotient rule

_ 92y
fxw - %[fx]_ax |:$2_|_y2:|

y(—2z) B 2y

@2+ (22 +y?)?
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Higher Partial Derivatives

In a similar way

o _
foy = 8_y[fy]:8_y[:c2fy2]

Higher Partial _ _
Derivatives — x( 2y) 2$y
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Higher Partial Derivatives

In a similar way

o _
foy = 8_y[fy]:8_y[:c2fy2]

Higher Partial _ _
Derivatives — x( 2y) 2$y

_ 9 9]y
fﬂcy - a_y[fw]_ay[ :|
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Higher Partial Derivatives

And finally

S b = 5= 5 ]
B -1 x(—2x)
o224 y? (22 +y?)?
22— 2

131 /435



Higher Partial Derivatives

And finally

0 0 —x
Higher Partial fym — % [fy] e |:—:|

Derivatives 833 l-2 + y2
-1 x(—2x)
22+ (22 +12)?2
2?2 — o2

IR

Fact: If f,, f, fzy and f,, are continuous (i.e. doesn’t 'jump’)
at (x,y), then fry = fye. i.e. fyo = fay holds for any f.
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Higher Order Partial Derivatives

Higher Partial
Derivatives
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Higher Order Partial Derivatives

fz,y) = ze.

Higher Partial
Derivatives

fo=e% fy =2xe? | f, = 2xe®

oy = 2e2Y . = 2e%Y = dze
Jay Y vy

fogy = 4% | fyoy = 4% | fyyz = 4e¥

f:):yy fywy fyym
so the order does not matter
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Example: 2004 Exam

equation
or o,
Deatives gr o2
Solution: First compute the required derivatives
0
a—i = —(1+ a2)e_(1+a2)”” cos ay
or = —ge~ Itz gip ay
dy
0 f

_ 2
9T 2. (4%

cos ay
Oy?

a Verify that f(z,y) = e~ (1497 cos ay is a solution of the
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Example: 2004 Exam

So computing the RHS (right hand side)

Higher Partial RHS = Jow =1
igher Partia
Derivatives = _aze_(l"'aQ)z cosay — e—(1+a2)x cos ay

= —(1+ a2)e_(1+“2)x cosay = LHS.

b Let g = yf(xzy). Show that

9 99 _
You  Tor
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Example: 2004 Exam

= f(zy) +ya f'(zy),

Higher Partial P — 2 gl
Derivatives ax y f (xy)?

where primes denote differentiation w.r.t the combined variable
Y.
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Example: 2004 Exam

= flzy) +yzf'(2y),
il 5 = V),

where primes denote differentiation w.r.t the combined variable
Y.

Note: To see this, consider

. (sin2z) = 2cos 2z
T
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Example: 2004 Exam

Also consider

(sinzy) = ycosxy
Higher Partial
Derivatives

oz
and therefore 3
5, (@) = yf'(xy)
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Example: 2004 Exam

Also consider

— (sinzy) = ycoszy
Higher Partial 8$
Derivatives

and therefore 9
5, (@) = yf'(xy)

Hence returning to the previous example

LHS = y f(zy) + 22/4TY) — 22 fXTY) = g(ay) = RHS

as required.
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Integration: Outline of Topics

© Basic Integration
@ Integration by Change of Variables
@ Integration by Parts

® Integration Of Rational Functions
® Trigonometric Integrals

@ Definite Integration

® Applications of Integration
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Indefinite Integration

Indefinite Integration

Basic If functions f(x) and F'(z) are defined such that

Integration

dF

dz = f(x),
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Indefinite Integration

Indefinite Integration

e ion If functions f(x) and F'(z) are defined such that
dF
a - f(a")a

then the integral of f(x) is given by

/f(w)dx = F(z)+C,

where C' is an arbitrary constant.
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Indefinite Integration

Indefinite Integration

e ion If functions f(x) and F'(z) are defined such that
dF
a - f(a")a

then the integral of f(x) is given by

/f(w)dx = F(z)+C,

where C' is an arbitrary constant.

Integration is the reverse of differentiation
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Example of Indefinite Integration

Indefinite Integration

Basic
Integration

Suppose that F(z) = 22, then

dF
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Example of Indefinite Integration

Indefinite Integration

Basic
Integration

Suppose that F(z) = 22, then

dF

then the integral of f(x) is given by

/Qxdx =22 +C,

where C' is an arbitrary constant.
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Basic
Integration

Basic Integrals

[ f(z)da
" (n#-1) | A"+ C
r! In|z|+C
e” 2% 4 C
cos (ax) 1in(az) + C
sin (ax) —Lcos(az)+C
1:2#“ tan~lax +C

Table: Table of Basic Integrals
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Basic Rules for Integration

Basic

Integration 1 The Addition Rule

/ fu(z) + v(z)] dz = / w(z)dz + / o(z)da.

141 /435



Basic Rules for Integration

Basic

Integration 1 The Addition Rule

/ fu(z) + v(z)] dz = / w(z)dz + / o(z)da.

2 Scalar Multiplication

/ku(x)da: = k/u(w)dw,

where k is a constant.
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Basic Rules for Integration: Change of Variable

3 Integration by Change of Variable

'c”ﬁii';:ié’? o Recall from the chain rule for differentiation that if

Variables f — f(.%') and z = x(u) is a function of u then

d Cdfde . da
@(f(it))—a@— (x)du'

Then if we integrate both sides with respect to u we obtain

f@) = [ 1)
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Basic Rules for Integration: Change of Variable

So from the last slide we have

/f —du

Integration by
Change of
Variables
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Basic Rules for Integration: Change of Variable

So from the last slide we have
Integration by

/ f(z —du
Change of

Variables but since f(z) = [ f'(x)dz we obtain the following

/ f)e = [ @) Edu
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Basic Rules for Integration: Change of Variable

So from the last slide we have
Integration by

/ f(z —du
Change of

Variables but since f(z) = [ f'(x)dz we obtain the following

/f’(:c)dx:/f’(:c)j—zdu

now letting f/(z) = g(x) we finally get

[otwas= [ (g@:)%) du,
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Basic Rules for Integration: Change of Variable

So from the last slide we have
Integration by

/ f(z —du
Change of

Variables but since f(z) = [ f'(x)dz we obtain the following

/ f)e = [ @) Edu

now letting f/(z) = g(x) we finally get

Jataras= [ (s ) au,

this is the rule for Integrating by Change of Variable.
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Basic Rules for Integration: Change of Variable
Procedure

. / f(z)dz = / (f(@j—i) du,

Change of
Variables

Then procedure for integrating by change of variables is
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Basic Rules for Integration: Change of Variable
Procedure

. / f(z)dz = / (f(@j—i) du,

Change of
Variables

Then procedure for integrating by change of variables is

® Choose a new variable u, such that f = f(u),
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Basic Rules for Integration: Change of Variable
Procedure

. / f(z)dz = / (f(@j—i) du,

Change of
Variables

Then procedure for integrating by change of variables is

® Choose a new variable u, such that f = f(u),
® Calculate % and write in terms of u
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Basic Rules for Integration: Change of Variable
Procedure

. / f(z)dz = / (f(:@j—i) du,

Change of
Variables

Then procedure for integrating by change of variables is

® Choose a new variable u, such that f = f(u),
® Calculate % and write in terms of u

© Rewrite the integral entirely in terms of u
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Basic Rules for Integration: Change of Variable
Procedure

. / f(z)dz = / (f(:@j—i) du,

Change of
Variables

Then procedure for integrating by change of variables is

® Choose a new variable u, such that f = f(u),
® Calculate % and write in terms of u

© Rewrite the integral entirely in terms of u

© Calculate the u integral
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Basic Rules for Integration: Change of Variable
Procedure

. / f(z)dz = / (f(:@j—i) du,

Change of
Variables

Then procedure for integrating by change of variables is

® Choose a new variable u, such that f = f(u),
® Calculate % and write in terms of u

© Rewrite the integral entirely in terms of u

© Calculate the u integral
® Rewrite in terms of ©
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Basic Rules for Integration: Change of Variable
Example

Example: Calculate the integral

Integration by sin \/de

Change of .

\/ariaﬁles \/E

Identify the 'difficult’, 'ugly’ or 'horrible’ bit, in this case it is

NG

du 11 1

Let u=+x .. E_iﬁzﬁ’

dz du
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Basic Rules for Integration: Change of Variable

Example

Therefore applying the Change of Variable formula
Integration by

[ s = [ (1) au

Variables yields the following for the integral:

sin /7 dz
VT
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Basic Rules for Integration: Change of Variable

Example

Therefore applying the Change of Variable formula
Integration by

[ s = [ (1) au

Variables yields the following for the integral:

sin /7 dz
VT

sin u
/ o e
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Basic Rules for Integration: Change of Variable

Example

Therefore applying the Change of Variable formula
Integration by

[ s = [ (1) au

Variables yields the following for the integral:

sin /7 dz
VT

sin u
/ o e

= 2/sinudu
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Basic Rules for Integration: Change of Variable

Example

Therefore applying the Change of Variable formula

[ s = [ (1) au

Integration by
Change of . . .
Variables yields the following for the integral:
sin/x
—\/_dac
NI

sin u
/ o e

= 2/sinudu

= —2cosu+C
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Basic Rules for Integration: Change of Variable

Example

Therefore applying the Change of Variable formula

[ s = [ (1) au

Integration by
Change of . . .
Variables yields the following for the integral:
sin/x
—\/_dac
NI

sin u
/ o e

= 2/sinudu

= —2cosu-+C
= —2cos/z+C
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Basic Rules for Integration: Change of Variable
Example

It is worth checking this result using differentiation

Integration by

\(iha‘nﬁf of d
P (—2 cos /x + C)
= =2 (— sin\/E) X %af%
sin v/x

7
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Change of Variable Example 2

Example: Calculate the integral

/\/5(1+\/§)‘1‘dx.

Integration by
Change of
Variables
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Change of Variable Example 2

Example: Calculate the integral

/\/5(1+\/§)‘1‘dx.

Integration by . . . .
Change of If we let u = \/z we still end up with a term that is like

\EELIES
u2(1 4 w)T which is still difficult to deal with.
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Change of Variable Example 2

Example: Calculate the integral

/\/5(1+\/§)‘1‘dx.

Integration by . . . .
Change of If we let u = \/z we still end up with a term that is like

\EELIES
u2(1 4 w)T which is still difficult to deal with.

So instead we try u =1+ /z.

du 1 1 dx
au_ - S o).
dz  2yx 2u-—-1) 7 du (u—=1)
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Change of Variable Example 2

Example: Calculate the integral

[ Ve vayian

Integration by . . . .
Change of If we let u = \/z we still end up with a term that is like

\EELIES
u2(1 4 w)T which is still difficult to deal with.

So instead we try u =1+ /z.
w_ 1 _ 1@
dr 2y 2w-1) ~° du

No apply the Change of Variable formula

JEC da:—/(f( )jj)du
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Change of Variable Example 2

Integration by
Change of
Variables

149 /435



Change of Variable Example 2

Integration by
Change of
Variables
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Change of Variable Example 2

1
/ VE (1+ Vo)t da
Integration by 1
T _ / (u — Dud2(u — 1)du

= 2/(u— 1)2u%du

149 /435



Change of Variable Example 2

1
/ VE (1+ Vo)t da
Integration by L
T _ / (u — Dud2(u — 1)du

(u— 1)2u%du

= 2/ui (u2—2u+1)du

= 2

149 / 435



Change of Variable Example 2

Integration by
Change of
Variables
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Change of Variable Example 2

Integration by
Change of
Variables

Barvmie? (1+\/E)3+C
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Change of Variable Example 3

Example: Calculate the integral

1 2
—ezdx.
/er T

Integration by
Change of
Variables
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Change of Variable Example 3

Example: Calculate the integral

Integration by
Change of 1 du 1

Variables Let U = E, then _— = ——
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Change of Variable Example 3

Example: Calculate the integral

1 1
—ezdr
Integration by 1 du 1
Change of . .
Variables Let u= E, then a = —F
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Some “Short Cuts”

Suppose /g ()

Integration by Question: then What is /g axr + b dl‘ for a # 0 ?

Change of
Variables

151 /435



Some “Short Cuts”

Suppose /g(:c)d:c

Integration by Question: then What is /g(al‘ =+ b)dl‘ for a # 0 ?

Change of
Variables

Solution is to use a suitable substitution. Let
du N dx

— =a — =,
dx du «a

u=ar+b,

éG(u) +C = éG(ax +0)+C
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Some “Short Cuts”

1
11n|433—2|+0 (a

Integration by
Change of
Variables
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Some “Short Cuts”

1
11n|433—2|+0 (a

Integration by
Change of

Variables /(2 — :L‘)7dx = —% X %(2 — l‘)g -+ C (CL = —1>
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Some “Short Cuts”

1
11n|43:—2|+C' (a

Integration by

ange o 1 1
\(;Zriaﬁlesf /(2 — :L‘)7dx = —I X §(2 — l‘)g -+ C (CL = —].>
1
/$+>\dw njz+AN+C (a=1)
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Some “Short Cuts”

1
11n|43:—2|+C' (a

Integration by

hange or / (2-2)dz = —%x%(Z—x)SJrC (a=—1)
1
/$+>\dw njz+AN+C (a=1)
/(3x—7)—4 - ! —1(393—7)—3 +C
3\ 3

_ —%(33; —7B 40 (a=3)
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Some “Short Cuts”

1
11n|43:—2|+C’ (a

Integration by

ange o 1 1
\(;Zriaﬁlesf /(2 — :L‘)7dx = —I X §(2 — l‘)g -+ C (CL = —].>
1
/$+>\dw njz+AN+C (a=1)

/(3x—7)—4 = %<—é(3$—7)_3) +C

_ —%(33; —7B 40 (a=3)

/sin(rr:l:+2)dx = —lcos(mc—i—Z)—i—C’ (a =m).
T
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Some “Short Cuts”

Suppose that /g(w)dx

Integration by Then what is /u'(l‘)g(u(:p))dx ?

Change of
Variables
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Some “Short Cuts”

Suppose that /g(w)dx

Itegration by Then what is /u'(l‘)g(u(:p))dx ?
Variables

Note that for the left hand side of the above

= G(u(z))+C. (13)
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Some “Short Cuts”

Some Examples using this result

ToteeEen by 2xcosx’dr = cosudu (u = x2)
Change of
Variables .
sinu+ C
= sinz?+C
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Some “Short Cuts”

Some Examples using this result

ToteeEen by / 2xcosx’dr = / cosudu (u = x2)

Change of
Variables

= sinu+C
= sinz?+C

1
/:1;2(:1:3+1)9dm = 3/3x2(x3+1)9dx (u=a+1)
1 1,5 10
- Cx = 1
sxqp @+ +C
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Some “Short Cuts”

More examples using this result

1 1 1 1 1
Integration by / _26 ede = — Y ezdr u=—
Change of T X X

Variables 1
= —ez +(C
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Some “Short Cuts”

More examples using this result

1 1 1 1 1
Integration by / _26 ede = — Y ezdr u=—
Change of T X X
Variables 1
= —eg —|— C

/sin:c costzdz = — /(— sinz) coszdz  (u = cosz)

1
= —gcos5x+C
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Some “Short Cuts”

More examples using this result

1 1 1 1 1
Integration by / _26 ede = — Y ezdr u=—
Change of T X X
Variables 1
= —eg —|— C

/sin:c costzdz = — /(— sinz) coszdz  (u = cosz)

1
= —gcos5x+C

Check your answers by differentiating!
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Integration by Parts

Recall the product rule for differentiation

Integration by
Parts
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Integration by Parts

Recall the product rule for differentiation

Now integrate both sides with respect to x:

du dv
uv = /vadx—i-/uadx

Integration by
Parts
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Integration by Parts

Recall the product rule for differentiation

Now integrate both sides with respect to x:

du dv
uv = /vadx—i-/uadx

and re-arranging this gives

Integration by
Parts

/u—dx = uv — /vd—udx,
dzx
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Integration by Parts

Recall the product rule for differentiation

Now integrate both sides with respect to x:

du dv
uv = /vadx—i-/uadx

and re-arranging this gives

/u—dx = uv — /vd—udx,
dzx

Integration by
Parts

which is known as the by-parts formula for integration.
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Example using Integration by Parts

Example: Calculate the integral
/xezdw

Integration by
Parts
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Example using Integration by Parts

Example: Calculate the integral

/ zetdx

Choose u=z, — =ce
Integration by d$

Parts du
then — =1, v:/e"”dx:ex
dx

157 /435



Example using Integration by Parts

Example: Calculate the integral

/ zetdx

dv
Choose u=2z, — =¢€"
Integration by d$
Parts du
then — =1, v= [ &®dex=¢"
dx

then applying the by parts formula yields

/me“’”dx = xex—/ex.lda:

= ze —e" 4 C.

(Note that the arbitrary constant has been included right at the
very last step)
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Example using Integration by Parts

rule
Int. tion b d
Parte — (ze” — e + O)
dx
= &+’ —
= ze”,

as required.

We can check this result by differentiating using the product
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Second example using Integration by Parts

Example: Calculate the integral

/332 cos Azdx (N #0).

Integration by
Parts
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Second example using Integration by Parts

Example: Calculate the integral

/332 cos Azdx (N #0).

Integration b v
Parts Choose u = 22, I = o8 (A\x)
x

d 1
then £ =2z, v= X sin (Az)
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Second example using Integration by Parts

Example: Calculate the integral

/332 cos Azdx (N #0).

Integration b v
Parts Choose u = 22, I = o8 (A\x)
x

d 1
then £ =2z, v= X sin (Az)

then in applying the by-parts formula

A A

z? 2
/a:2 cos \zdr = —sin (A\z) — — /xsin (A\x)dz.
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Second example using Integration by Parts

It is necessary to apply 'by-parts’ again on the right hand
integral, so

d
Choose u =z, £ = sin (A\z)
d 1
then S = 1, v= — cos (A\x)

Integration by dx
Parts
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Second example using Integration by Parts

It is necessary to apply 'by-parts’ again on the right hand
integral, so

d
Choose u =z, £ = sin (A\z)

d 1
then <o = 1, v= — cos (Ax)

Istetgration by dx
Hence
2 2
/332 cos \xzdx = % sin ()\a:)—x {—; COS AT — / —COSE\Ax) }
= z* sin (Azx) + 2z cos (A\z) — 2 /cos (Ax)dx
D) ! )\2 A2

2

= % sin (Ax) + —5 cos (Ax) —

)\2 2 sin (\x) + C

)\3
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Using the Integration by Parts Formula

Recall that the by parts formula is

dv du
/uadx = uv — /vadx,

But how do we choose u and g—g?

Integration by
Parts
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Using the Integration by Parts Formula

Recall that the by parts formula is

dv du
/uadx = uv — /vadx,

But how do we choose u and g—g?

Integration by
Parts

The general idea is that (almost always)
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Using the Integration by Parts Formula

Recall that the by parts formula is

dv du
/uadx = uv — /vadx,

But how do we choose u and g—g?

Integration by
Parts

The general idea is that (almost always)

e u should get “easier” when you differentiate it.
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Using the Integration by Parts Formula

Recall that the by parts formula is

dv du
/uadx = uv — /vadx,

But how do we choose u and g—;?

Integration by
Parts

The general idea is that (almost always)

e v/ should get “easier” when you integrate it.

e u should get “easier” when you differentiate it.
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Using the Integration by Parts Formula

Recall that the by parts formula is

dv du
/uadx = uv — /vadx,

But how do we choose u and g—;?

Integration by
Parts

The general idea is that (almost always)

e v/ should get “easier” when you integrate it.

To show this let's consider the previous example

e u should get “easier” when you differentiate it.
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Using the Integration by Parts Formula

Previous Example: Calculate the integral

/332 cos Azdx (A #0).

Integration by
Parts
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Using the Integration by Parts Formula

Previous Example: Calculate the integral

/332 cos Azdx (A #0).
e by If we were to choose

arts

dv 9

u = cos (Ax), e —
T
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Using the Integration by Parts Formula

Previous Example: Calculate the integral

/332 cos Azdx (A #0).

e by If we were to choose
dv 9
U = cos (Ax — =z
( )7 (1$
du a3
then — = Asin(A\x V= —
e (Ax), 3

3 dv 2

and quite clearly v = 3x” is more complex than 3% = x*.
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Integration of Inx

Example: Compute the following integral

/ In xdz

Integration by
Parts
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Integration of Inx

Example: Compute the following integral

/ In xdz

Solution: Writing the integral as

/lnfcdx:/l.lnxdx

Integration by
Parts

Then choosing

dv
U ne, e
U 1
th —_— == =
en Eplin V=2
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Integration of Inx

Then applying the by-parts formula yields

/lnxdmz/l.lnmdw

Integration by 1

Rarts = zlnzx — /1‘ x —dx
T
= glhex—-—z+C

/lnxdx =z(lnz—-1)+C.
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Further Examples

Example: Compute the following integral

/a: sin (mx)

Integration by
Parts
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Further Examples

Example: Compute the following integral

/a: sin (mx)

Applying 'by-parts’ yields

Integration by
Parts

1
/xsin (mx)dz = ~ 2 cos (mz) + —/cos (mz)dx
m m

m m?2

1

/wsin (mz)dx = ~Z cos (mz) + — sin (mx) + C.
m m

= — % cos (mx) + 1 sin (mx) + C.
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Further Examples

Example: Compute the following integral

I = /62’” sin xzdzx.

Integration by
Parts
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Further Examples

Example: Compute the following integral
g = /62’” sin zdz.

Choosing

Integration by
Parts s dU o
u=sinx, —=e

dx

2z

du 1
th —_= = — 2z
en dz cosxr, v 26

and applying by parts gives

1 1
I = 5629” sinx — §/€2$ cos zdzx
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Further Examples

so we have

1 1(1 1
I = gestinx—g{iehcosx—i-i/e%sinxdx}

Integration by
Parts

1 1 1
= 56236 (Sinzv— écosm) — Zﬂ—i—K
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Further Examples

so we have

1 1(1 1
I = gestinx—g{iehcosx—i-i/e%sinxdx}

Integration by
Parts

1 1 1
= 56236 (Sinzv— écosm) — Zﬂ—i—K

1 1
-7 = 562”” (sin:n — §cos:5> + K

2 1
= I = 562”3 (sinw—§cos:c)+C
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Aside: Alternative evaluation using complex

numbers

Note that we can also solve this last integral using complex
numbers, since

I = /€2$ sinzdzr = Im (/ eQxeixda:) =1Im </ e(2+i)$d$>,
Integration by

) since e = cosx + isinx, where Im is the imaginary part.
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Aside: Alternative evaluation using complex

numbers

Note that we can also solve this last integral using complex
numbers, since

I = /€2$ sinzdzr = Im (/ eQxeixda:) =1Im </ e(2+i)$dw>,

since ¥ = cosx + isinx, where Im is the imaginary part.
Hence treating the right hand side integral as a regular
exponential integral we have

Im </ e(2+i)xdx>

1
= Im (2 1 + C’)

where C' = C, +iC; is a complex number.

Integration by
Parts

54
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Aside: Alternative evaluation using complex

numbers

Then in attempting to evaluate the imaginary part one has

2+1i

2 —
— o2z
Integration by - Im (4 + 1 + C)

Parts

9 i
= Im (Tlezm (cosz +1isinz) + C, + iCi)

2

_ 1 x 2 2z
= 56 cosm+5e

sinz 4+ C;

2 1
= ge% (sinx — ECOSIL‘> + C;

precisely the same as before.
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Some Tricks, Based on Integration By Parts

Suppose an integral .# is defined as

I = /sin1 zdx = /1.sin1 zdz.

Integration by
Parts

Choosing
.1 dv
u=sin""x, — =
"o dx
then
U 1
recall that — = ——, v =1x.

dz /1 —2?
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Some Tricks, Based on Integration By Parts

Applying by parts gives

. 1
I = gsin'x— [ X ——dx
V1—2z2
Integration by .1 —X
Parts = gzsin r+4+ | ——dx
V1—22

and recalling that the right hand side integral may be solved
via a substitution © = 1 — 22 to give

S =zsin lz+\V1-22+C
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Integrating Rational Functions

In this section we are interested in evaluating integral that are
in the form of one polynomial divided by another, i.e.

/ axr +b d
22 +cx+d

Integration Of
Rational
Functions
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Integrating Rational Functions

In this section we are interested in evaluating integral that are
in the form of one polynomial divided by another, i.e.

/ axr +b d
22 +cx+d

Integration Of where in the above case the numerator of the integrand is a

Rational

Functions polynomial of degree 1, and the denominator is a polynomial of
degree 2.
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Integrating Rational Functions

In this section we are interested in evaluating integral that are
in the form of one polynomial divided by another, i.e.

/ axr +b d
22 +cx+d

Integration Of where in the above case the numerator of the integrand is a
ationa

Functions polynomial of degree 1, and the denominator is a polynomial of
degree 2.

Before this however, it is essential to revise our knowledge of
partial fractions.
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The rules of Partial Fractions:

We are considering functions of the form %

Integration Of
Rational
Functions
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The rules of Partial Fractions:

We are considering functions of the form %

1 Factorise the denominator g(x) as much as possible.

Integration Of
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Functions
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The rules of Partial Fractions:

We are considering functions of the form %

1 Factorise the denominator g(x) as much as possible.

2 A linear factor g(z) = (ax + b) gives a partial fractions of

the form
A

(ax +b)’
Integration Of

Rational where A is a constant.

Functions
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The rules of Partial Fractions:

We are considering functions of the form %

1 Factorise the denominator g(x) as much as possible.

2 A linear factor g(z) = (ax + b) gives a partial fractions of

the form
A
(ax +b)’
Integration Of
pational where A is a constant.
3 g(x) = (ax + b)? gives partial fractions of the form
A B

(ax +b) * (az +b)%’

where A and B are constants.
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The rules of Partial Fractions:

4 g(x) = (ax + b)> gives partial fractions of the form

A i B n C
(ax +b)  (ax+0)?%  (ax+b)3’

where A, B and C are constants.

Integration Of
Rational
Functions
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The rules of Partial Fractions:

4 g(x) = (ax + b)> gives partial fractions of the form

A i B n C
(ax+b)  (ax+0b)?  (azx+0b)3

where A, B and C are constants.

Integration Of
Rational
Functions

5 lrreducible quadratics g(x) give partial fractions of the

form
Ax+ B

ax? 4+ bxr +c

where ax? + bx + ¢ cannot be factorised any further.
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Partial Fractions Example

Example: Decompose f(z) using partial fractions, where

8xr — 28
f) = x2 —6x+8

Integration Of
Rational
Functions
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Partial Fractions Example

Example: Decompose f(z) using partial fractions, where

8xr — 28
fl) = x2 —6x+8
Solution
Integration Of 8r — 28 _ 8r — 28 _ A n B
Fanctions 22—6248 (z—-2)(z—4) x-2 z-4

therefore, multiplying through by (z — 2)(z — 4) gives

8r —28=A(x —4)+ B(x —2)
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Partial Fractions Example

So we have

8r—28 = A(x —4) + B(z —2)

Integration Of
Rational
Functions
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Partial Fractions Example

So we have
8r—28 = A(x —4) + B(z —2)
Putting x = 4 gives

2B =4=—> B =2,
Integration Of

Rational
Functions
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Partial Fractions Example

So we have
8r—28 = A(x —4) + B(z —2)
Putting x = 4 gives

2B=4=— B=2,

Integration Of
Rational

Functions and putting x = 2 gives

—2A=-12=— A=6.
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Partial Fractions Example

So we have
8r—28 = A(x —4) + B(z —2)
Putting x = 4 gives

2B=4=— B=2,

Integration Of
Rational

Functions and putting x = 2 gives
—2A=-12=— A=06.

Hence
8r-28 _ 6 2
22 —6x+8 -2 z—4
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Integrating Rational Functions

Case 1: Suppose that 22 + cx + d has two real roots, i,e.
azx® +bx +c= (z — a)(z — B),

where «, 8 are both real numbers.
Example: Evaluate the indefinite integral

Integration Of 33} — 5
Rational —dx
Functions ;UQ —2r—3
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Integrating Rational Functions

Case 1: Suppose that 22 + cx + d has two real roots, i,e.
azx® +bx +c= (z — a)(z — B),

where «, 8 are both real numbers.

Example: Evaluate the indefinite integral
Integration Of 33} — 5
Rational -
Functions / :UQ —_ QZL' _ 3dx
First note that
22 —22-3=(z—-3)(z+1)
3r—5 A B

22 —22 -3 (x—3)+:c+1‘
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Example: Integrating Rational Functions

3r—5=A(x+1)+ Bz - 3).

Integration Of
Rational
Functions
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Example: Integrating Rational Functions

Hence
3r—5=A(x+1)+ Bz —3).

Letting . = —1 gives
—8=—-4B = B =2,

Integration Of and |etting =3 gives

Rational
Functions

4=4A = A=1,

and hence
3r—5 1 2

22 —22 -3 (x—3)+33+1'
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Example: Integrating Rational Functions

Therefore
3r—5
——d
/ 22— 2z 3"
1 2
Integration Of - / (,’L‘ — 3 + X + 1) dx

Rational

Functions 1 2
= d d
/ r—3 T / r+1 .

= In|z—-3|+2Injz+1|+C
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Example 2: Integrating Rational Functions

Case 2: Suppose that 22 + cx + d has one repeated (real)
roots, i,e.
ar’ 4+ bz + ¢ = (z — a)?,

where « is a real numbers. Again we use partial fractions

Example: Evaluate the indefinite integral

Integration Of
Rational
Functions xz
4 —2x+1
First note that

x x A B
22—-2x+1 (z—1)2 z-1 (z-—2)%

Il
I
+
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Example 2: Integrating Rational Functions

x=Alx—1)+B=Ax+ B — A.

Comparing coefficients of z on the right hand side yields
B =1, and comparing constant terms yields

B-A=0=A=B=1

LSSl Therefore for the integral

Rational
X
——d
/ 22 —2x+1 v

Functions
1 1
= d —_d
/:L'—l x+/(x—1)2 v

1
= ln|m—1\—m+C.
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Example 3: Integrating Rational Functions

Case 3: Assume that the polynomial 22 + cz 4 d has no real
roots

2?4 cx+d=(z—a)+ 5
by completing the square. We then use the substitution

T — a = uf, etc.

Example: Evaluate the indefinite integral

Integration Of
Rational

Functions T
—Fd
/ 22— dr+6 "

First note that the quadratic in the denominator has no real
roots, and hence we write

2 —dr+6=(r—2)%+2
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Example 3: Integrating Rational Functions

So we get

/ mdx.

Now use a substitution, i.e

x—2=\/§u, d—x:\/§,
du

Integration Of
Rational

e where the /2 factor is used to standardise the resulting
integrals. The substitution © = x — 2 would also work, though
it leads to non-standard integrals.

Therefore
(x—2)2+2=2u>+2=2(u*>+1).
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Example 3: Integrating Rational Functions

Therefore

2 +v2u
—.V2d
/ 202 + 1) Va2du
Integration Of

Rational
Functions
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Example 3: Integrating Rational Functions

Therefore

x
—d
/ 22— 4z 46"
2 +/2u
= ——v2d
/2@I+UVF”
Integration Of \/ﬁ u
Rational — —d —d
Functions U2 _|_ 1 u + / u2 _|_ 1 u
1
= \/§tan_1u+§ln(u2+l) +C

-2 1 2_4
= V2tan! (xﬁ )-l—iln(xTM)-l-C
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Extra Examples on Integrating Rational Functions

Example: Evaluate the indefinite integral

xr—2
—d
/x2—2x+5 v

S CiNl  First note that the quadratic in the denominator has no real

Rational

Functions roots, and hence we write

2?2 +5=(r—1)*+4
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Extra Examples on Integrating Rational Functions

So we get
r—2
———dx.
/ (x—1)2+4
Now use a substitution, i.e
Integration Of d.’If

Rational _ T
Functions r—1= QU, du - 27

Therefore
(x—1)2+4=4(u>+1)
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Extra Examples on Integrating Rational Functions

Therefore
T —2
—d
/ 2 —2+5 0
2u—1
- / U odu
4(u? +1)
Integration Of

Rational
Functions
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Extra Examples on Integrating Rational Functions

Therefore

/m2—2$+5
_ / 2u—1
N 4(u2—|—1
1
/ du — = / ——du
u2 uZ 41

1 1 1
= 51 (u +1)—§tan u+C
1 r—1\2 1 r—1
= —In 1] — Ztan™!
5 <( 5 ) +> > an ( > )-I—C

187 /435
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Extra Examples on Integrating Rational Functions

Example: Evaluate the indefinite integral
z+1 rz+1

—dr= | ———=d

/$2—4$+4x /(az—Z)Qm

x+1 A B A4 B(xr—2)

Inte.gration Of — _|_ —
Foncame (z-2? (@-2? 2-2  (2-27

Now

= A+ Bx—-2)=z+1,

and equating coefficients yields

A=3, B=1.
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Extra Examples on Integrating Rational Functions

Therefore we have

/ r+1
2 — 4:E—|-4

T+ 1
a:—2

Integration Of /
Rational 1
/ a: -2

= ) +Injz-2|+C

Functions

dx
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Extra Examples

Try to evaluate these integrals yourself

@ Show that
/%dx: 2In|z +3|+3ln|z+2|+C
® Show that
Rovoral r4+1 3
Functions / mdas =Inlzr —2|— P +C
© Show that

T—2 1 (z-1)2\ 1, _,[(z-1
/—$2_2x+5dw—§1n(—4 > 2taurl 5 +C
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More complicated areas

If the degree (i.e. highest power) in the numerator is > the
degree of the denominator, then start with long division.
Example: Evaluate the indefinite integral

349
/w—i— xdm
r—1

Integration Of
Rational
Functions
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More complicated areas

If the degree (i.e. highest power) in the numerator is > the
degree of the denominator, then start with long division.
Example: Evaluate the indefinite integral

349
/w—i— xdm
r—1

First we do the long division

Integration Of CL’2 + x + ].
Rational

Functions T — 1) §C3 + 2
— 3+ 22
xz

2?4
x+2
—xz+1

3
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More complicated areas

Hence the integrand may be written as

542 3
S S B
z—1 z—1

Ueelel  and therefore the integral evaluates to

Rational
Functions

de ==+ —+3z+3loglz - 1|+ C

/m3+2m 3 x?
r—1 3 2
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Integrals involving roots of quadratics

Example: Evaluate the indefinite integral

1
I = | ——dx.
/\/1+:c2 ‘

Let q
r =sinhu, — & _ cosh u.
dz

Integration Of
Rational
Functions
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Integrals involving roots of quadratics

Example: Evaluate the indefinite integral

1
I = | ——dx.
/\/1+:c2 ‘

Let d
. Y
T = Slnh U, e -— = COSh u.
dx
Integration Of Then
Rational
Functions f — COSh ’LLdU

1
= /ldu (using cosh?u = 1 + sinh? u)
u+C
= sinh 24+ C
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Integrals involving roots of quadratics

Example: Evaluate the indefinite integral

P / 1 1 1 / 1 4
— €r = —— —_—JAX.
V14 — 122 — 222 V2] VT—6z— 12

Integration Of
Rational
Functions
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Integrals involving roots of quadratics

Example: Evaluate the indefinite integral

P / 1 1 1 / 1 4
— €r = —— —_—JAX.
V14 — 122 — 222 V2] VT—6z— 12

The quadratic inside the surd is irreducible, so we complete
the square

Integration Of
Rational

gl 7T—6r—a22=7—(x+3)*+9=16—(z+3)%

Therefore the integral may be written as

4 1
f‘%/m“
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Integrals involving roots of quadratics

So we have

dzx.

4 1
fzﬁ/16—(a:+3)2

Now solve using a substitution. Let

dz
r+3=4u = — =4,
: du
Integration Of
Rational

Functions and therefore for the integral

4 4 / ! d
= — | —————=du
V2 ) V16 — 16u2
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Integrals involving roots of quadratics

To solve the integral

[ =
——du
1 — u?

use the substitution

. du
uw=sinf, — W= cosf.

Integration Of
Rational
Functions
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Integrals involving roots of quadratics

To solve the integral

[ =
——du
1 — u?

use the substitution

. du
uw=sinf, — W= cosf.

Integration Of

Rational Therefore

Functions

I = \/_/ ——ceost0dl

= +C=—sintu+C
\/_ x/§

= ism_l <:c—|—3) +C. (14)
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Integrals involving roots of quadratics

Now for some standard results...

After completing the square: +(x + «)? £ 32,

let ub=z+a =— +u®+l.

Integration Of
Rational

1

Functions / 1 d ¢ 1 / 1 d L
U ="tan "u —F—=Aadu =8S1m " u
u? +1 ' Ny ’

/ ! du = cosh™' u / !
Vit —1 ’ Vi +1

du = sinh™ ! w.
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Integrals involving roots of quadratics

In general, if you encounter

var?+bxr+c

inside an integral

Integration Of
Rational
Functions
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Integrals involving roots of quadratics

In general, if you encounter

var?+bxr+c

inside an integral

Integration Of e Complete the square to get

VialV=£(z + ) + 5

Functions
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Integrals involving roots of quadratics

In general, if you encounter

var?+bxr+c

inside an integral

Integration Of e Complete the square to get

VialV=£(z + ) + 5

Functions
e and then use a substitution, either trigonometric or
hyperbolic.
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Some trigonometric integrals

i Evaluate

/ cos® zdz

ii Evaluate

Trigonometric
Integral .
ntegrals / Sln2 zdzx
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Some trigonometric integrals

i Evaluate

1
/0052 xdr = / B (cos2z + 1)dx

1 1
:Zsin2$+§x—|—0

ii Evaluate

Trigonometric
Integral .
ntegrals / Sln2 l‘dl‘
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Some trigonometric integrals

i Evaluate

1
/0052 xdr = / B (cos2z + 1)dx

1 1
:Zsin2$+§az+0

ii Evaluate

Trigonometric 1
Integrals /Sin2 del‘ = / 5(1 — COS Qx)dx

1 1
zim—ZSiHQ:U-I-C
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Some trigonometric integrals

iii Evaluate

I = /0085 xdzx.

Trigonometric
Integrals
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Some trigonometric integrals

iii Evaluate
I = /0085 zdx. = /cosaz(l — sin® z)%du.

exploiting the odd power of cosine. Now use the
substitution

Trigonometric
Integrals
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Some trigonometric integrals

iii Evaluate

I = /0085 zdx. = /cosaz(l — sin® z)%du.

exploiting the odd power of cosine. Now use the
substitution

. u
U =snr, — = COSZT,
X
and hence
Eenemeti I = / (1 —u?)du = / (1—2u* +u*) du
2 5 1 4
= - - C
U 3u +5u +

2 1
= sinx—gsin3x+gsin5m+C.
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Some trigonometric integrals

In general,
I = /sin2"+1 xdr = /(1 — cos® z)" sin zd,

can be solved via the substitution © = cos .

Trigonometric
Integrals
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Some trigonometric integrals

In general,
I = /sin2"+1 xdr = /(1 — cos® z)" sin zd,
can be solved via the substitution u = cos .

Trigonometric

Integrals Similarly, odd powers of cos z,sinh z and coshx can be dealt
with in a similar manner.
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Definite Integrals

If ' is a function,

e.g [mQE =32_-922=s5.

Definite then the definite integral

Integration

b
[ f@hde = (@)L = ) - Fl@).
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Definite Integrals

Example:
2 1,]7 1

/ 22dx = [—332] == (23 — 13) = Z

) 37|, 3 3

Note: Including the arbitrary constant C' in the above integral
would make no difference.

Definite
Integration

203 /435



Some Properties of Definite Integrals

@ Reversing the limits of integration. If b > a then

[ = [ s

Definite
Integration
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Some Properties of Definite Integrals

@ Reversing the limits of integration. If b > a then

/ab f(z)dx = _/ba f(z)dx

@® Integrals over length zero

/a " fa)de =0,

Definite
Integration
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Some Properties of Definite Integrals

@ Reversing the limits of integration. If b > a then

/ab f(z)dx = _/ba f(z)dx

@® Integrals over length zero

/a " fa)de =0,

© Additivity of integration on intervals. If ¢ is any element of
[a, b], then

/ " f(w)ds = /  Hayde + /b " f(2)da.

Integration
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Some Properties of Definite Integrals

@ Reversing the limits of integration. If b > a then

[ = [ s

@® Integrals over length zero

/a " fa)de =0,

© Additivity of integration on intervals. If ¢ is any element of
[a, b], then

/ " f(w)ds = /  Hayde + /b " f(2)da.

Integration

O z and y are dummy variables, meaning

/  flr)de = / " Fw)dy
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Applications and Significance of Integration

e We introduced integration as the process of
“antidifferentiation”, meaning a process by which the
‘anti-derivative’ of a function may be found.

Applications

of Integration
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Applications and Significance of Integration

e We introduced integration as the process of
“antidifferentiation”, meaning a process by which the
‘anti-derivative’ of a function may be found.

e However, integration is also a way of calculating area, for
example, the area under a curve.

Applications

of Integration
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Applications and Significance of Integration

e We introduced integration as the process of
“antidifferentiation”, meaning a process by which the
‘anti-derivative’ of a function may be found.

e However, integration is also a way of calculating area, for
example, the area under a curve.

e This is achieved by summing the contribution of lots of
infinitesimally small pieces.

Applications
of Integration
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Applications and Significance of Integration

We introduced integration as the process of

“antidifferentiation”, meaning a process by which the

‘anti-derivative’ of a function may be found.

e However, integration is also a way of calculating area, for
example, the area under a curve.

e This is achieved by summing the contribution of lots of
infinitesimally small pieces.

e To demonstrate, consider the area bounded by the z axis,
the lines = a, * = b and the curve y = f(z), as shown

Applications in the following diagram.

of Integration
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Applications and Significance of Integration

Applications
of Integration
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Applications and Significance of Integration

We can show that the shaded area above is

/a ' Ha)da.

Applications
of Integration
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Applications and Significance of Integration

Let A = area from say, the origin O to the point z under the
curve. Then
y ) =
()
T = TTx+ x=25b .
a My,
Applicatiol?s
of Integration A(x + h) — A(.%') _|_ hf(x),
where hf(z) is the area of the shaded rectangle.
29 5




Applications and Significance of Integration

Proof.
Therefore

Az +hh) - A ~ f(2).
Now letting h — 0 yields
dA
L—i) = Aw@= [ @)

Area from x = a to x = b therefore is

b
Applications A(b) - A(a) = / f(l‘)dm

of Integration

O

v
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Applications and Significance of Integration

Example: Find the area A of an ellipse, given by the equation

Applications
of Integration
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Applications and Significance of Integration

Note from the previous diagram, that A = 4 x A; by symmetry

Applications
of Integration
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Applications and Significance of Integration

So for the area A

a 2
A = 4/ by/1— Sda
0 a
a 2
- 4b/ by/1 - Zoda
0 a

Solve this integral by substitution. Let

T . dz
— =sinu, = — =acosu
a du

and

Applications

of Integration 1'2
1—% =1 —sin?u = cosu.
a
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Applications and Significance of Integration

So we have

uz
A= 4b/ cos u(a cos u)du.

1

Important note: In changing the variable it is also very

important to change the limits, i.e. find numerical values for u;
and us.

When = =a, sinu=1, u:g.
When =0, sinu=0, u = 0.

Therefore we have

Applications
of Integration

us

2
A= 4ab/ cos? udu
0
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Applications and Significance of Integration

So proceeding with the integral gives

™

A = 4ab/ cos? udu
0

4()/72r 1+1 2u ) d
= 4q — + —cos2u | du
0 2 2

1 1
= 4ab( u—i—zsm2u>

- 4ab< +0—(0+0))

= mab.

Applications
of Integration
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Applications and Significance of Integration

So proceeding with the integral gives

™

A = 4ab/ cos? udu
0

4()/72r 1+1 2u ) d
= 4q — + —cos2u | du
0 2 2

1 1
= 4ab( u—i—zsm2u>

- 4ab< +0—(0+0))

= mab.

Applications
of Integration

Also note that for a circle, a = b giving A = ma®.
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Past Exam Question (1997)

Sketch the region enclosed by the curve y = 1/(1 + x?) and
the line y = 1/2 and find it's area.

Applications
of Integration
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Past Exam Question (1997)

Sketch the region enclosed by the curve y = 1/(1 + x?) and
the line y = 1/2 and find it's area.

Apply the recipe for curve sketching
e No vertical asymptotes
¢ An even function

Passes through (0, 1)

y # 0, and in-fact y > 0 for all x.

e y—0aszx— Foo.

For the turning points

Afplplicatior?s dy 2:1;
of Integration
dz (1+ 22)? when
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Past Exam Question (1997)

** Sketch Required **

1
1
A = /1 T2 dz — (Area of Rectangle)

1
1 1
= —— dz—2x-=
/_114—.%'21: X2

= [tan_1 55]1,1 -1

Applications
of Integration
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Another example

Question: Find the area bounded by the curve
y = x? — 62 + 5 and the z axis between z =1 and = = 3.

3 3
A = /ydxz/ (m2—6$+5)dx
1 1

1 3
= [—x?’ — 32 + 5£C:|
3 1
1
= —5-.
3
Applications But why is the area negative? Let's draw a sketch.

of Integration
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Another example

UETZ -6z F0

Applications
of Integration - 10

1 2 3 4

Regions below the x axis give a negative areal!
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Improper Integrals

Improper integrals are when the range of integration is infinite.

Suppose that .# is defined as

s = / ’ fl)ae,

then we can define an improper integral as

/ f(z)dz = blim .

Applications

of Integration
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Improper Integrals

Example: Consider the integral

o0
il
f:/ —x, where n > 1.
1"

Applications

of Integration
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Improper Integrals

Then

Applications =

of Integration

Example: Consider the integral

[ =
1a”

o0
il
f:/ —x, where n > 1.
1"
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First Order ODEs: Outline of Topics

@ Introduction to Differential Equations

® First Order Separable ODEs

® First Order Linear ODEs

@® Initial Value Problems
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Ordinary Differential Equations

Classification of Ordinary Differential Equations

Much of engineering and physical science (also economics etc)
e can be reduced to the solution of equations which involve one

to Differential

Equations or more derivatives of an unknown function.
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Ordinary Differential Equations

Classification of Ordinary Differential Equations

Much of engineering and physical science (also economics etc)
e can be reduced to the solution of equations which involve one

to Differential

Equations or more derivatives of an unknown function.

Example

Newton's Second Law
d? dx
i.e. F'=ma, where x = the (unknown) position of the particle

To determine the behaviour of a particle it is necessary to find
a function z(t) such that it satisfies (15).
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Ordinary Differential Equations

Classification of Ordinary Differential Equations

Introduction
to Differential
Equations

If the unknown function depends in a single independent
variable only, ordinary derivatives appear in the differential
equation and it is said to be an ordinary differential equation

(0.D.E).

If the derivatives are partial derivatives, then the equation is
called a partial differential equation (P.D.E).
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Ordinary Differential Equations

Classification of Ordinary Differential Equations: Example of an O.D.E

Example (RLC Series Circuit)

Introduction Consider the following series circuit comprised of a resistor, a

to Differential

Equations capacitor and an inductor. This circuit is known as an RLC
circuit

4,
a I
|

C L R

Figure: An RLC Circuit
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Ordinary Differential Equations

Classification of Ordinary Differential Equations: Example of an O.D.E

Example (RLC Series Circuit (continued))

Introduction d2 dI
to Differential L I E ]-
Equations dt2 + R d u C ( 6)

where

I = Current Flowing in a Circuit
C = Capacitance

R = Resistance

L = Inductance

FE = Voltage

where C, R, L and E are constants and [ is the unknown
function to be found. )
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Ordinary Differential Equations

Classification of Ordinary Differential Equations: Example of an P.D.E

Introduction
to Differential

Equations Example (The Beam Equation)

The Beam Equation provides a model for the load carrying and
deflection properties of beams, and is given by

82 4

Ou L 20y

ot2 ox*t

In this course we only deal with ODEs. Next year we will deal
with the solution of PDEs.
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Ordinary Differential Equations

Classification of Ordinary Differential Equations: Order of an ODE

e The order of a differential equation is the order of the
highest derivative that appears in the equation.

Introduction

i Pl o For example, equation (16) is a second order ode

Equations
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Ordinary Differential Equations

Classification of Ordinary Differential Equations: Order of an ODE

e The order of a differential equation is the order of the
highest derivative that appears in the equation.
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Ordinary Differential Equations

Classification of Ordinary Differential Equations: Order of an ODE

The order of a differential equation is the order of the
highest derivative that appears in the equation.
Introduction

fo Diferenta o For example, equation (16) is a second order ode
e Another example: The following is a third order ode

yll/ —"_ 26xyll + yy/ _ x4

where
r dy " d2y
y - dx’ y dw27

e More Generally

y" = f (x,y,y',y”, . 7y("_1)) (17)

th

is an n"" order ode.
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Ordinary Differential Equations

Solutions of some ODEs

Introduction
to Differential

Equations A solution ¢ of the ODE (17) is a function such that

¢ ¢ ..., o™

all exist and satisfy

1"

o) = f (,0(2),¢'(@),6" (@), ..., 0" V(@) .
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Ordinary Differential Equations

Solutions of some ODEs

Consider the first order ODE for radioactive decay

Introduction
to Differential

Equations dR
= _ _k
dt i

where k is a constant.

V.
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Ordinary Differential Equations

Solutions of some ODEs

Consider the first order ODE for radioactive decay

Introduction
to Differential

Equations dR
= _ _k
dt i

where k is a constant.
This has the solution

R = ¢(t) = ce F

where c is an arbitrary constant of integration.

V.
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Ordinary Differential Equations

Solutions of some ODEs

Consider the first order ODE for radioactive decay

Introduction
to Differential

Equations dR
= _ _k
dt i

where k is a constant.
This has the solution

R = ¢(t) = ce F

where c is an arbitrary constant of integration.
We can verify that this solution:

dR

= = —kce ™™ = —kR.

V.
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Ordinary Differential Equations

Solutions of some ODEs

Introduction
to Differential
Equations

Show that the following second order ODE
x2y// — 3xy, +4y =0

has the solution
y=¢=2’lnz
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Introduction
to Differential
Equations

Ordinary Differential Equations

Solutions of some ODEs

Solution (...continued)

First calculate the required derivatives

2
¢ (x) =2zxlogx + 2 = 2zlogx + x
7

"

1

¢ (z) =2logr +2z—+1
x

= 2logx + 3.
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Introduction
to Differential
Equations

Ordinary Differential Equations

Solutions of some ODEs

Solution (...continued)

First calculate the required derivatives

2
¢ (x) =2zxlogx + 2 = 2zlogx + x
7

"

1

¢ () =2logr+2z—+1
x

= 2logx + 3.

Now substitute these derivatives into the RHS of the ODE to
yield

x% [2logx] — 3z [2zlog x + x] + 4x2log x

= 222 log z + 322 — 622 logx — 322 + 422 log =

=0 as required.

230/
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Ordinary Differential Equations

Linear and non-Linear ODEs: Example of a Linear Equation

A linear ODE of order n can be written as

Introduction ao(x)y(n) + ai ($)y(n_1) + e + an(x)y = g($)
to Differential
Equations

i.e it is a linear function of y, v,y , ..., y™.

If it cannot be written in this form then it is said to be
non-linear.
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Ordinary Differential Equations

Linear and non-Linear ODEs: Example of a Linear Equation

A linear ODE of order n can be written as

ivoducton ao(@)y™ + ar(2)y" Y + - + an(x)y = g(x)
to Differential
Equations y(n) |

. . . . . ’ "
i.e it is a linear function of 4,y ,y ,...,

If it cannot be written in this form then it is said to be
non-linear.

Example

Legendre's Equation
(1- :132)y” — Zmy/ +ky=0

is ubiquitous in problems with spherical symmetry (e.g a
Hydrogen atom), and is a linear equation.

v
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Ordinary Differential Equations

Linear and non-Linear ODEs: Example of a non-Linear Equation

Example

Introduction The motion of simple pendulum can be modelled using the

to Differential

Equations equation

d26 g .
@—FYSIDHZO

and is non-linear, due to the sin 8 term.
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Ordinary Differential Equations

Linear and non-Linear ODEs: Example of a non-Linear Equation

Introduction
to Differential
Equations

Example (...Continued)

However note that if 6 is small then siné ~ 6 (from Taylor
series), in which case a linear approximation to the pendulum
equation is

d?6 ¢
azt0=0

which is linear.
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Ordinary Differential Equations
First Order ODEs

In many cases, first order ODEs can be written in the form

y = f(z,y). (18)

First Order
Separable
ODEs

Example

Examples of this are the following equations
yl =sinx
y/ =xy + 3.

Our task is, given an f(z,y), is to find a y such that it satisfies
equation (18).

.
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Ordinary Differential Equations

First Order ODEs Example

When ¢y = f(x) then this is particularly simple.

/ .
y =sinzx

First Order

Separable i.e. What function, when differentiated gives sin x.

”
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Ordinary Differential Equations

First Order ODEs Example

When ¢y = f(x) then this is particularly simple.

/ .
y =sinzx

First Order

Separable i.e. What function, when differentiated gives sin x.

We integrate both sides

/y/dw = /sinwdw

to yield the general solution of the ODE

y=—cosx + C,

general because it involves the arbitrary constant C.

”
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Ordinary Differential Equations
First Order ODEs Example continued

S Grlr Example (...Continued)

Separable

ODEs We can check the solution by differentiating
dy / .
-— = = Ssmnax.
dz J

which satisfies the original equation.
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Ordinary Differential Equations
First Order ODEs Example

Find a solution of the equation

dy

. — =T
First Order

Separable dx

ODEs

4
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Ordinary Differential Equations
First Order ODEs Example

Find a solution of the equation

dy

. — =T
First Order

Separable dm

ODEs

Solution: Integrating both sides

gives the general solution as

_ !

2w2+C’.

y(z)

which we can easily check by differentiating.

4
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Ordinary Differential Equations

Separable Equations

Many first order ODEs can de reduced to the form

First Order g(y)% = f(z). (19)

Separable dl'
ODEs

which is called a separable ODE.
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Ordinary Differential Equations

Separable Equations

Many first order ODEs can de reduced to the form

First Order g(y)% = f(z). (19)

Separable dl'
ODEs

which is called a separable ODE.

If the equation can be written like this we can ‘separate the
variables’ to give

g(y)dy = f(x)dx (20)

where terms involving y occur only on the LHS, and terms
involving = occur only on the right hand side.
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Ordinary Differential Equations

Separable Equations

Firet Order We can now integrate both sides of (20) to yield

Separable

sy = [ s

and carrying out the two integrals in the above leads to the
general solution of (19).
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First Order
Separable
ODEs

Ordinary Differential Equations

Separable Equations: Example

Find the general solution to the ODE

Qy?1 + 4z = 0.

<

Separating the variables we have

Jydy = —4zdx <=

9/ydy:—4/xdx

92 42
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Ordinary Differential Equations

Separable Equations: Example

Solution (continued)

i.e. the general solution is

2 2
First Order T y
Separable = ar = = K
ODEs 9 4

which describes a ‘family’ of ellipses.

We can check our solution by differentiating

2.2
gl T W =

9yy/ + 4z = 0.

<
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Ordinary Differential Equations

Separable Equations: Another Example

Find the general solution to the ODE

dy y+1
First Order -— =

Separable dx - x + 1
ODEs
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Ordinary Differential Equations

Separable Equations: Another Example

Find the general solution to the ODE

First Order % = y + 1

Separable dz B T + 1
ODEs

<

Separating the variables and integrating yields

1 L
= X
y+1 7T o111

/y+1 y=

T+ 1 .
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First Order
Separable
ODEs

Ordinary Differential Equations

Separable Equations: Another Example

Solution (continued)

Carrying out the necessary integration gives
Injy+1=hlz+1|+C

and using log a/b = log a — log b we can write this as

1
n y+ ‘:C
xr+1

or
y—|—1_ c

r+1 <~
Again we can easily check this using differentiation.
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First Order
Separable
ODEs

Ordinary Differential Equations

Separable Equations: Another Example

Solve the ODE

dy 2

-2 1

dx Ty )
d
Y _ 4
1492

dy
/1+y2_/dx

arctany =z + C
y = tan (z + C).
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Ordinary Differential Equations

Separable Equations: Another Example

Solution (..continued)

Again we can check using differentiation

First Order
Separable
ODEs l

J = < (tan(z + )
= sec? (z + C)
=1+tan®(z +C)
=1+

and hence the original equation is satisfied.
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Ordinary Differential Equations

Separable Equations: 2007 Exam Question

First Order
Separable
ODEs

finding y explicitly (i.e y = f(z).
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Ordinary Differential Equations

Separable Equations: 2007 Exam Question

First Order
Separable
ODEs

finding y explicitly (i.e y = f(z).

This equation is separable, thus separating the variables and

integrating gives
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Ordinary Differential Equations

Separable Equations: 2007 Exam Question Continued

And to solve the integrals we use partial fractions to give

First Order 1 ]- 1 1

eparable ———— | dy = - d
obee /[y y-l—l] /[ :U+as—1] ‘
Iny—In(y+1)=—-Inz+n(z-1)+C

ln(L>=ln(aj_1)+C
y+1 x

y+]. e_c X

y = 1l
z—1

i.e. The explicit solution is y = Kr—atl
T —x
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Ordinary Differential Equations

Separable Equations: 2010 Exam Question

Solve the equation

First Order
Separable
ODEs
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Ordinary Differential Equations

Separable Equations: 2010 Exam Question

Solve the equation

dy
2 —
;irst Order (y + = y)a - 1
eparable y
ODEs
d
y(1+a%) F_j

/ydy_/ 2+1

= arctanz + C

i.e. the solution is y = £+v/2arctanz + 2C.




Ordinary Differential Equations
First Order Linear ODEs

First order linear ODEs are equations that may be written in

the form

First Order dy i ( ) ( )

Linear ODEs -— X - €T
de p\x)y =4q

Note that these equations are not necessarily separable.
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Ordinary Differential Equations

First Order Linear ODEs

Consider the equation

dy 1 3

y=2 21
et (21)

which happens to be separable and linear

First Order
Linear ODEs

250 /435



Ordinary Differential Equations

First Order Linear ODEs

Consider the equation

dy 1 3

y=2 21
o T3 (21)

which happens to be separable and linear

i O Solving via the separation of variables method:
dy 33—y dy 1 /
=" = —7-=——[d
dr 2 y—3 2%

Integrating and simplifying yields

ln(y—3)=—§+C — y=Ke2+3

c

where K = €% is a constant of integration.
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Ordinary Differential Equations

First Order Linear ODEs

However note that the original differential equation

dy . r 3
ar 2779
can be written as
First Order e% dy + 16£ e% 3
Linear ODEs - — = —
° dr 2Ty
by multiplying through by es.
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Ordinary Differential Equations

First Order Linear ODEs

However note that the original differential equation

dy . r 3
ar 2779
can be written as
First Order e% dy + 16% e% 3
Linear ODEs -_— — = —
dr 2Ty
by multiplying through by es.

Now observe that the LHS can be written as an exact derivative

4)-2

NI
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Ordinary Differential Equations
First Order Linear ODEs

Now integration of this yields

z

yegz?)e%-l-c — y=3+4+Ce 2

First Order

tinear ODEs which is the same result as before.
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Ordinary Differential Equations
First Order Linear ODEs

Now integration of this yields

ye%:?)e%-l-c — y:3+C'e_%
First Order

Lincar ODES which is the same result as before.

The factor 2 that we multiplied the equation through is
known as the integrating factor, or |.F.
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Ordinary Differential Equations

First Order Linear ODEs: General Procedure

Please note that the general derivation described here is not
examinable, but it's application is.

Consider the equation

Flirst Order dy _
Linear ODEs d[L‘ + p(‘/'v)y - q(x)

we then multiply through by p(z) (the integrating factor which
is to be found) to yield

253 /435



Ordinary Differential Equations

First Order Linear ODEs: General Procedure

We then add and subtract yfl—‘; to the LHS

Plus Minus
d dp dp
Yy _
pla) 7 +y o tp@)pe)y -y = u(z)e(z)

First Order
Linear ODEs
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Ordinary Differential Equations

First Order Linear ODEs: General Procedure

We then add and subtract yfl—‘; to the LHS

Plus Minus
d d du
Y H _ o Oh
pla) 7 +y o tp@)pe)y -y = u(z)e(z)
—_—
First Order % (l”’y)
Linear ODEs Wh|Ch g|ves

£ W)+ o) - 2| = utalato)

and we want to choose a u(x) such that

du

1~ Map(@) =0.
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Ordinary Differential Equations

First Order Linear ODEs: General Procedure

First Order
Linear ODEs
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Ordinary Differential Equations

First Order Linear ODEs: General Procedure

i.e

/d# =/p(x)dx = Inp= /P(x)dl’

Therefore we finally have for the Integrating Factor p
First Order
Linear ODEs

w(z) = eJ p(x)dz

i

and this is the general formula for the integrating factor (you
should learn this!).

Note that there is no need for an arbitrary constant of
integration.
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Ordinary Differential Equations

First Order Linear ODEs: General Procedure

Now the original ODE becomes

L (u(a)y) = nlxa(a)

and integrating yields

First Order
Linear ODEs

M@yz/ﬁ@w@Mx+C

” [ p@)g(@)dz + C

()

y:

Thus, 1st order linear ODEs can always be solved.
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Ordinary Differential Equations

First Order Linear ODEs: General Procedure

Note Before we attempt to solve such equations we should
always make sure that the equation is in “standard form”, i.e.

First Order
Linear ODEs dy

I +p(z)y = q(z)

i.e: The factor in front of the first derivative should be 1!!
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Ordinary Differential Equations
First Order Linear ODEs: Example

Find the general solution to the following ODE:

dy
2 L9y =e7
dz +2y=e

First Order
Linear ODEs
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Ordinary Differential Equations
First Order Linear ODEs: Example

Find the general solution to the following ODE:

dy

2y=¢e "
d$+ye

v

Note that this equation is not separable. We have

First Order
Linear ODEs

First we find the integrating factor:

M(IL“) _ efp(ac)dx _ ede:c — 2T
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Ordinary Differential Equations

First Order Linear ODEs: Example continued

Solution Continued

Now multiply the entire equation through by u(z)

dy _
62x_ _|_2€2:1:y — e2ze T _ T
First Order dl‘
Linear ODEs
i.e d
2x T
= (¢7)

and integrating both sides yields

ye?* =" + 0 — y=e T4+Ce .
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Ordinary Differential Equations
First Order Linear ODEs: Another Example

Find the general solution to the following ODE:

dy : 1.
cosT— + ysinx = —sin 2z
First Order da’,’ 2
Linear ODEs
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Ordinary Differential Equations
First Order Linear ODEs: Another Example

Find the general solution to the following ODE:

dy . 1.
cosT— + ysinx = —sin 2z
First Order dl’ 2
Linear ODEs

First we put the equation into standard form and simplify:

dy P sin2x  2eesTsinx
—= anx = =
dz Y 2cosx 2e05T

= sin x.
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Ordinary Differential Equations

First Order Linear ODEs: Another Example (continued)

Example Continued

Next we find the integrating factor p(z)

1 1

eln (COS $) _ COS :

First Order

Linear ODEs /’L(x) = ef tan xdx — e— In (Cosx) —

Please note that a very common error is to write

—In(

e COST) _ cog
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Ordinary Differential Equations

First Order Linear ODEs: Another Example (continued)

Solution Continued

We now multiply the (standard) equation through by p(x) to
give
1 dy tanxz

y =tanzx
cosrdr cosz
d /oy
First Order = _
Linear ODEs 1.€. a (COSQ:) - ta'nx

We now integrate to give

L :/tanxdx+C:—ln(cos:c)+C

COS T

So for the general solution we have

y = Ccosz — coszIn (cosz).

4
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Ordinary Differential Equations

Initial Value Problems

e So far the solutions we have obtained contain an arbitrary
constant. In engineering applications interest is in a
particular solution satisfying the initial conditions (IC).

e Typically we may be given the information

y(wo) = yo

Initial Value
Problems

and this information enables us to determine the arbitrary
constant.

e An ODE together with an initial condition is called an
initial value problem (IVP).
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Ordinary Differential Equations

Initial Value Problems

In order to solve an IVP we apply the following two steps
@ Find the general solution, containing the arbitrary constant

o ® Then apply the initial condition to determine the arbitrary
nitial Value
Problems constant.
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Ordinary Differential Equations

Initial Value Problems: Example

Solve the initial value problem

d
(22 + 1)£ Y241, y(0)=1.

Initial Value
Problems

265 /435



Initial Value
Problems

Ordinary Differential Equations

Initial Value Problems: Example

Solve the initial value problem

d
(22 + 1)£ Y241, y(0)=1.

<

First we find the general solution we find the general solution,
so we solve the equation via separation of variables

dy 1 1
(x2+1)a:—(y2+1):>/y2+1dy:—/$2+1dx
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Ordinary Differential Equations

Initial Value Problems: Example

Solution (..continued)

which yields
arctany = — arctanx + C

Initial Value
Problems

<
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Ordinary Differential Equations

Initial Value Problems: Example

Solution (..continued)

which yields
arctany = — arctanx + C

We now apply the initial condition

y(0)=1 = arctan(l) = —arctan(0) + C

s
Initial Value —
Problems 4

And hence the solution to the IVP is

arctan(y) + arctan(z) = %

Note that it is acceptable to stop here, although it is possible
to further simplify as follows

<
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Ordinary Differential Equations

Initial Value Problems: Example

Solution (..continued)

arctan(y) + arctan(z) =

N

tan [arctan(y) + arctan(z)] = tan [—} = 1L,

Initial Value
Problems

4
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Ordinary Differential Equations

Initial Value Problems: Example

Solution (..continued)

and using the composite angle formula for tan(a + b), i.e

Initial Value
Problems

tana + tanb
t )= ———
@ =) 1 —tanatanbd

the solution reduces to

1—
yte o, _l-z
1—ay 1+

4
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Ordinary Differential Equations

Initial Value Problems: Example

Solve the IVP

2yl — 4xy =2z, y(0) =0.

Solution

First we rewrite as
!
Initial Value Yy —2zy =z,

Problems
This is first order linear, and so we calculate the integrating
factor i as

4
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Ordinary Differential Equations

Initial Value Problems: Example continued

Solution (..continued)

Initial Value
Problems




Ordinary Differential Equations

Initial Value Problems: Example continued

Solution (..continued)

d
P <y6_$2> —ze® = ye_$2 = /:L‘e_xzdx,
7
1 1
ye ™ = —56_:02 +C = y= =5 +Ce”.

Now apply the condition y(0) = 0 to give

Initial Value
Problems

1 1
===+ =0=_
2+ 2

and so the solution is




Ordinary Differential Equations

Initial Value Problems: Another Example

Solve the IVP

xy/ +2y =422, y(1) =2.

First write the equation in the standard form

Initial Value
Problems

!/
2
y +-oy=dx
7
and then we can calculate the integrating factor as

2
/.1/(33) = €Xp |:/ _d:L':| = 621n|x| = eln:c2 ES LL‘2.
T

V.
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Ordinary Differential Equations

Initial Value Problems: Another Example (continued)

Solution (..continued)
x2yl +2zy =423 = — (ac y) = 443
and integrating yields

C
y=zt+C = y::v2—|-—2.
7

Initial Value
Problems

271 /43%
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Ordinary Differential Equations

Initial Value Problems: Another Example (continued)

Solution (..continued)

and integrating yields

C
y=zt+C = y::v2—|-—2.
x
Initial Value . i
Problems Now apply the condition y(1) = 2 to give
yl)=1+C=2 = C=1.

and so the solution is

x2yl +2zy =423 = — (aczy) = 443

271 /43%
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Ordinary Differential Equations

A General Note on the Solution to Differential Equations

e Warning: In solving a first order linear equation the
solution containing the arbitrary constant describes
all possible solutions.

e However for a nonlinear differential equation, “additional”
nitial Value solutions may occur.

Problems
e Strictly speaking the term general solution should only be
discussed when discussing linear differential equations.
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Ordinary Differential Equations

Example: Calculating the Escape Velocity from Earth

Example
The velocity v satisfies the 1st order ODE (derived from
F = ma),
vdv . _gR2
dr 72

Initial Value where

Problems

g = Acceleration due to gravity
R = The radius of the earth
r = Distance from the centre of the earth
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Ordinary Differential Equations

Example: Calculating the Escape Velocity from Earth

First we find the general solution to the ODE via separation of
variables

/vdv:—gRQ/d—g—i—C = 17)2
r 2

Initial Value
Problems
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Ordinary Differential Equations

Example: Calculating the Escape Velocity from Earth

First we find the general solution to the ODE via separation of
variables

d 1 R?
/vdv:—gR2/T—;+C = 57)2 It e

Initial Value

i Next we determine C'. Suppose that on the earth’s surface,
when r» = R, v = vy (the initial velocity), then
gR?

1 1
5’[}3:?4‘0 = Czivg—gR
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Ordinary Differential Equations

Example: Calculating the Escape Velocity from Earth

Solution (..continued)
and therefore the specific solution is given by
11)2 = g_R2 + 11)2 —gR

Initial Value
Problems
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Ordinary Differential Equations

Example: Calculating the Escape Velocity from Earth

Solution (..continued)
and therefore the specific solution is given by
11)2 = g_R2 + 11)2 —gR

Initial Value e The question now is, what is the escape velocity?

Problems
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Initial Value
Problems

Ordinary Differential Equations

Example: Calculating the Escape Velocity from Earth

Solution (..continued)
and therefore the specific solution is given by

1 gR? 1
51)2 = T + 5’08 —gR.

e The question now is, what is the escape velocity?

e We require v > 0 always. If v = 0 then the projectile stops
moving upwards and begins to fall.

e i.e. We need to ensure that v > 0 (never v = 0).
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Ordinary Differential Equations

Example: Calculating the Escape Velocity from Earth

Initial Value
Problems

Solution (..continued)

and therefore the specific solution is given by

1 gR? 1
51)2 = T + 5’08 —gR.

The question now is, what is the escape velocity?

We require v > 0 always. If v = 0 then the projectile stops

moving upwards and begins to fall.

i.e. We need to ensure that v > 0 (never v = 0).
Note that if v} — 2gR > 0 then v? # 0.

So the minimum vy required for this is vg = /2gR.
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Ordinary Differential Equations

Example: Calculating the Escape Velocity from Earth

Note that if vg = \/2gR then

29 R?
v? = J
;

which is never zero.

Initial Value
Problems
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Ordinary Differential Equations

Example: Calculating the Escape Velocity from Earth

Note that if vg = \/2gR then

29 R?
v? = J
;

which is never zero.

Initial Value
Problems

Thus vg = /2gR is the minimum required velocity, or the
escape velocity, and

vo ~ 11.2km/s or 6.95 miles/second.
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Ordinary Differential Equations

Example: Determining the Time of Death

e Suppose we wish to estimate the time of death of
someone following an accident or homicide.

Initial Value
Problems
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Ordinary Differential Equations

Example: Determining the Time of Death

e Suppose we wish to estimate the time of death of
someone following an accident or homicide.

e The surface temperature of an object changes at a rate
that is proportional to the difference between the object
and the ambient temperature of the environment.

Initial Value
Problems
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Ordinary Differential Equations

Example: Determining the Time of Death

e Suppose we wish to estimate the time of death of
someone following an accident or homicide.

e The surface temperature of an object changes at a rate
that is proportional to the difference between the object
and the ambient temperature of the environment.

e This is Newton's law of cooling, and is represented by the
first order linear differential equation

hilen a

Fri

—k(0—T)
where

0 = 0(t) = Body temperature
T = Environment temperature

k = Constant (of Proportionality)
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Ordinary Differential Equations

Example: Determining the Time of Death

Note that if

de
0>T — o <0 i.e. Body cools

and if

Initial Value
Problems

dé . .
=T — E:O i.e. no change in 6
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Ordinary Differential Equations

Example: Determining the Time of Death

First find the general solution to the cooling equation

0
& ke-1)
dt (6-T)

Separating the variables and integrating gives

Initial Value

Problems d0
D7 :—k;/dt = In@-T)=-kt+C
i.e the general solution is

=T+ Ce .
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Ordinary Differential Equations

Example: Determining the Time of Death

Example (..continued)

Now suppose that at ¢ = 0 the body is discovered with
temperature 6. At the time of death t,4, the body temperature
04 = 37°C (=98.6°F).

i.e. 9(0)=(90 = G=T+C

Initial Value

Problems and therefore the specific solution is

=T+ (6 —T)e ™. (22)

V.
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Initial Value
Problems

Ordinary Differential Equations

Example: Determining the Time of Death

Example (..continued)

Now suppose that at ¢ = 0 the body is discovered with
temperature 6. At the time of death t,4, the body temperature
04 = 37°C (=98.6°F).

i.e. H(O)ZHO = G=T+C
and therefore the specific solution is
=T+ (6 —T)e ™. (22)

However we do not know k. However we can determine k by
making a second measurement of body temperature at some
later time %7.

V.
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Ordinary Differential Equations

Example: Determining the Time of Death

Solution (..continued)

Suppose 6 = 61 when t = t1, then

01 =T+ (o — T)e "

. 1 0, —T
.e. =——1 2
ie. k tln(eo—T> (23)

Initial Value
Problems

v
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Ordinary Differential Equations

Example: Determining the Time of Death

Solution (..continued)

Suppose 6 = 61 when t = t1, then

01 =T+ (o — T)e "

. 1 0, —T

€. =——1 2

ie. k tln(eo—T> (23)
Initial Value

Problems Finally, to find ¢4, substitute § = 64 and t = t4 into (22) to
give

_ 1 0 —T
- T _ Te Fta — _]
04 +(00 )6 = g A n|:90_ :|

where k is given by (23).

v
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Ordinary Differential Equations

Example: Determining the Time of Death

Solution (..continued)

two hours later. The ambient (room) temperature is 68°F.

Initial Value
Problems

For example, suppose that a corpse at ¢ = 0 is 85°F and 74°F
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Initial Value
Problems

Ordinary Differential Equations

Example: Determining the Time of Death

Solution (..continued)

For example, suppose that a corpse at ¢ = 0 is 85°F and 74°F
two hours later. The ambient (room) temperature is 68°F.

Then 1 74 — 68
k= —iln (85—68) = 0.521

and therefore

1 [98.6 — 68
tqg = 1

- ~—1.129 h
0521 | 85— 68 ] ours

i.e. the body was discovered approx 1 hour 8 minutes after
death.
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Ordinary Differential Equations

Example: Epidemics

Divide the population into two parts
i Those with disease which can infect others (y)
i Those who are susceptible (x). where x +y = 1.

Disease spreads by contact between sick and well members.
The rate of spread 3—? is proportional to the number of contacts

xy.

Initial Value
Problems
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Ordinary Differential Equations

Example: Epidemics

Divide the population into two parts
i Those with disease which can infect others (y)
i Those who are susceptible (x). where x +y = 1.
Disease spreads by contact between sick and well members.
The rate of spread 3—? is proportional to the number of contacts

xy.

Initial Value
Problems

Thus

d .
d—g =axy =a(l —y)y, with y(0)=yp.
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Ordinary Differential Equations

Example: Epidemics

First we find the general solution:
d
/ W _, / dat
y(1—y)

1 1
/[——i——]dy:at—i-c
y l-y

Initial Val 1n’y|—ln’1—y’:at+c = y:Ceo‘t_yCeat
Problems

which solves to give
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Ordinary Differential Equations

Example: Epidemics

Now apply the initial condition to give

1
+1

Yo =

Ql=

and therefore

Initial Value 1

Problems y(t) — :
1+ (y—o - 1)

and note that as ¢t — oo, y(t) — yo/yo = 1, meaning that
eventually, all the population will be infected.

—at _ Yo
Yo+ (1 —yo)e ot

e
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Vectors: Outline of Topics

& Introduction to Vectors

@ The Vector Scalar Product

& The Vector Cross Product
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Vectors

Introduction

ntraduction In. engineering appllcat|on.s many physical quantities have
o Vs direction as well as magnitude.

Definition (Scalar)

A scalar quantity is a quantity that is completely described by
magnitude only
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Vectors

Introduction

I troduetion In. englneerlng appllcat|on.s many physical quantities have
to Vectors direction as well as magnitude.

Definition (Scalar)

A scalar quantity is a quantity that is completely described by
magnitude only

Examples of scalars are
e Temperature
o Mass

e Speed
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Vectors

Introduction

Definition (Vector)

Introduction A vector is a quantity that requires specification of both
to Vectors - o B
magnitude and direction.
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Vectors

Introduction

Definition (Vector)

Introduction A vector is a quantity that requires specification of both
to Vectors - o B
magnitude and direction.

Examples of vectors are

e Force: e.g. A force of 12N vertically downwards

Velocity: e.g. A velocity of 12m/s to the right

Momentum

Magpnetic field
Notation: with be either

a or a

in textbooks, exams etc.
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Vectors

Introduction: Graphical Representation of a Vector

Introduction
to Vectors

e The line from A to B (as
B indicated by the arrows) is
a vector

a e It has magnitude equal to
the length of AB, and
direction as shown

. . —
Figure: A Vector e We write AB or a to
represent this vector.
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Vectors
Introduction: Vector Equality

Introduction Two vectors are equal
© e when they have both
same magnitude and
A direction.
— —
e ie AB=CD.
— e

e But AB # EF as they

differ in both magnitude
I8, and direction.

— P—
E\\ e Note that AB # EF

s even if they had the same
length.

Figure: A Vector
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Vectors
Addition of Vectors

Two vectors a and b are added “head to tail”, to find the sum
a+b.

Introduction
to Vectors

_
b
/a/ a
a
a+b

Figure: Vector Addition of a+ b

Figure: Vector Addition of b + a
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Vectors
Addition of Vectors

Introduction
to Vectors

Note that vector addition is associative, i.e.
at+b=b+a

as the resulting vectors have the same magnitude and direction.
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Vectors
Addition of Vectors

Introduction
to Vectors

Figure: Vector Addition

—_— - — _— — —
Note that DA+ AB = DB and DB + BC' = DC
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Vectors

Example: Forces on an Object

Introduction
to Vectors

Figure: Forces acting on a body

R=F;+F;

and |R| = the magnitude of R, given by Pythagoras as
IR| =182 +52~ 94N
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Vectors

Example: Forces on an Object

Introduction
to Vectors

Figure: Forces acting on a body

So we have |R| ~ 9.4N, and for the direction this can be calcu-
lated using

8
tanf = —=—=-=1.6
an 5

and hence 6 =58°.
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Vectors

Example: Multiplication by a Scalar

e Given a vector a and a scalar k, ka is a vector having the
same direction as a but k times it's magnitude
\iteduction e Also —1 x a = —a has the same magnitude as a but
opposite direction

a
a
/ —a
Qa
Figure: Scalar Multiplication Figure: Scalar Multiplication
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Vectors

Example

S Two points A and B have position vectors ( i.e. relative to a
to Vectors fixed origin O) a and b respectively. What is the position
vector of a point on the line joining A and B, equidistant from
A and B.
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Vectors

Example

Example

Two points A and B have position vectors ( i.e. relative to a

Introduction

to Vectors fixed origin O) a and b respectively. What is the position
vector of a point on the line joining A and B, equidistant from
A and B.

Solution

. ——
First we note that AB =b — a

y
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Vectors

Example

Example

Two points A and B have position vectors ( i.e. relative to a

Introduction

to Vectors fixed origin O) a and b respectively. What is the position
vector of a point on the line joining A and B, equidistant from
A and B.

—
B First we note that AB =b — a
— 1—
x:a+AX:a+§AB
—a—i—l(b—a)
B 2
1

y
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Vectors

Example

Introduction
to Vectors

Prove that the lines joining the mid-points of a general
quadrilateral form a parallelogram.
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Vectors

Example

First let

Introduction
to Vectors
— —

a=AB, b= BC,
— —
c=CD, d=DA

and it then follows that
a+b4+c+d=0. (24)

Also let E, F,G, H be the mid-
points of the sides.

987455



Vectors

Example

Now

Introduction
to Vectors

—_ —_
HE =HA+ AF
1

1
—d+-=
54 T 33

— —  —
GF =GC+ CF
1 1

— _Zc—-b
2¢ ™

1

1

last part obtained using (24)
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Vectors

Example

We can also show that

Introduction
to Vectors

_— == —
FF=FEB+ FEF
1

:é(a"i_b)’
— —_— —
HG =HD+ DG

1
zi(a+a)

P——
=FF

Hence EFGH is a parallelo-
D gram, since opposite sides are
parallel and have the same
length.
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Vectors
Unit Vectors

Introduction

to Vectors e Any vector with magnitude 1 is called a unit vector, and is
represented using the hat (") symbol, for example p.

e In general if a is a vector with magnitude |a| then

R a
a=—
EY
since
al| |a
ol = || = =
al|  |al
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Vectors

Example

Introduction
to Vectors

Prove that the line that passes through one vertex of a
parallelogram and the mid-point of the opposite side divides
one of the diagonals in the ratio 1:2
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Vectors

Example

Let E be the mid-point of BC.

Introduction
to Vectors

— ——
Let AE = ¢ and BD = d.

Let I be the point of in-
tersection.

— —

BI) —z, ’ID} —y,

|
2

_%
1| =« ‘IE‘ — .

—

Then BI = zd, ID = yd, Al = u€, I[EF = ve. where that hats
denote unit vectors.

4
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Vectors

Example

_ The aim is to show that
Introduction
to Vectors 2 = Y.

NABD: a+d=Db
NAABE : a—i—%b:c

AAID: ué+yd=b
AABI: ué=a+zd.

Dividing the third by 2 and adding to the forth gives

3 ~ y'* 1 -~ ~
§uc+§d—§b+a+xd—c+md.

4
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Introduction
to Vectors

Vectors

Example

Therefore

as required.

But since ¢ = (u + v)& this

gives
1 .
— — C =
9 u v

can only be true if

and c is not parallel to d, this

1 &
-

4
3017435



Vectors

Example: Components of a Vector

Introduction e Consider any three non-parallel vectors in 3D, a,b and ¢
to Vectors . . ..
which form a reference system with origin O.

e Then the position vector r of point P (i.e. r = (TP) is

r=a+b+ec.
/B
O a A
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Vectors

Example: Components of a Vector

Introduction e Consider any three non-parallel vectors in 3D, a,b and ¢
to Vectors . . ..
which form a reference system with origin O.

e Then the position vector r of point P (i.e. r = (TP) is

r=a+b+ec.
3 5 4"« OABCPQRS is a parallelepiped.
C g~ e We the let
c/ / /] X
LB a=z4, b=azb, c=uzé
b .
o a A where the hats denote unit

vectors.

302 /435



Vectors

Example: Components of a Vector

Hence we have
Introduction - ~ ~
r=zxa+ yb + z¢

to Vectors

i.e. x,y and z are components of r in the reference frame
a,b,c.

3
c/ /

;B

b
O a A
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Vectors

Example: Components of a Vector

Let P, and P, be two point such that

Introduction
to Vectors

r1 = x14+y1b+ 28
ro = x24 + yob + 22¢C

then r1 = rg only when x1 = 9, y1 = ¥2, 21 = 29.
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Vectors

Example: Components of a Vector

Let P, and P, be two point such that

Introduction
to Vectors

r1 = x14+y1b+ 28
ro = x24 + yob + 22¢C

then r1 = rg only when x1 = 9, y1 = ¥2, 21 = 29.

Similarly, if
rg = xgé. + y3b + 236

such that rg = rq1 + rg then

238 + y3b + 238 = (218 + y1b + 218) + (228 + yob + 208).
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Vectors

Example: Components of a Vector

Introduction
to Vectors

Hence we have

r3 = T1 + T2
Y3 =Yy1 + Y2
23 = 21 + 29.

Vectors may therefore be added by adding their respective
components.
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Vectors

Cartesian Coordinates

Introduction
to Vectors

e Unit vectors in the z,y
and z directions are i, j
and k respectively.

e A point P has position
vector r from the origin
given by

r = zxi+yj+ zk.
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Introduction
to Vectors

Vectors

Cartesian Coordinates: Examples

If
a=06i—3j+k
b = 4i + 2j
then
a+b=10i—j—k
b—a=-2i+5j—k
3a=18i —9j + 3k
etc.
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Vectors

Cartesian Coordinates: The Magnitude of a Vector

Let |r| =, then

iduin T o Pl =i ek
| 12 =22+ (Va? + ¢2)?
k g | = ac2 + y2 + 22.
1N - Iy Therefore we have
I/Z’N/;'
T T T T RS l=|r| =22 +y%+ 22
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Vectors

Cartesian Coordinates: The Magnitude of a Vector

Let |r| =, then

iduin T o Pl =i ek
| 12 =22+ (Va? + ¢2)?
k g | = ac2 + y2 + 22.
1N - Iy Therefore we have
I/Z’N/;,
. T T T T RS l=|r| =22 +y%+ 22
Hence

la] = /62 + 412 = V46
|b| = V42 + 22 + 02 =20 = 2V/5.
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Vectors
The Dot Product (also known

as the Scalar Product or Inner Product)

The dot product of two vectors is
T he Vector written a.b and is defined as

Scalar Product

a.b = |a||b| cos b

where 0 < 0 < 7 is the angle
9 \ between a and b.

Note that the dot product is a
scalar quantity.
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Vectors
The Dot Product: Perpendicular Vectors

Two non-zero vectors are perpendicular (orthogonal) if and
only if their dot product is zero. i.e if

The Vect
Scaelarelgrgtrzluct ab =0 = ‘a‘ |b| COS 9 =0
= cosf#=0
s
= 0=—.
2
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Vectors
The Dot Product: Perpendicular Vectors

Two non-zero vectors are perpendicular (orthogonal) if and
only if their dot product is zero. i.e if

The Vector

Scalar Product ab =0 = ‘a‘ |b| COS 9 =0
= cosf#=0
s
= 0=_.
2

Note that
a.a = |al|a] cos0 = |a]?

i.e |a] = y/a.a, which is a good what to find the length of a
vector.
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Vectors
The Dot Product: Properties of the Dot Product

e We have the property of linearity
The Vector

Scalar Product (Oéa —+ /Bb) .C = wa.c + ﬂbc
e We have the property of symmetry

ab=Db.a

e and we have the property of Positive Definiteness

aa>0 wth aa=0 <= a=0
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Vectors
The Dot Product in Cartesian Coordinates

Let the vectors a and b be given by

a=a1i+ asj+ ask
The Vector . .
Scalar Product b = b]_l + b2J + b3k
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Vectors
The Dot Product in Cartesian Coordinates

Let the vectors a and b be given by

a=a1i+ asj+ ask
The Vector . .
Scalar Product b = b]_l + b2J + b3k

Now
ii=|i|li]jcos0=1

and similarly j.j=k.k=1.
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Vectors
The Dot Product in Cartesian Coordinates

Let the vectors a and b be given by

a=a1i+ asj+ ask
The Vector . .
Scalar Product b = b]_l + b2J + b3k

Now
ii=|i|li]jcos0=1

and similarly j.j=k.k=1.
We also have

ij=ji=0 ik=ki=0, jk=kj=0

since 0 = g
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Vectors
The Dot Product in Cartesian Coordinates

Thus a.b= (ali + asj + agk).(bli + boj + bgk)

Scatar Product = ayi.(b1i + boj + b3k)
+ agj.(b1i + bej + bsk)

+ ask.(byi + boj + bsk)
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Vectors
The Dot Product in Cartesian Coordinates

Thus a.b= (ali + asj + agk).(bli + boj + bgk)

Scatar Product = ayi.(b1i + boj + b3k)
+ agj.(b1i + bej + bsk)
+ agk.(byi + boj + bk)

=aibj+0+4+0
+0+ a0y +0
+ 0+ 0+ asbs.
Which leads to the result
a.b = a1b; + agbs + ascs.
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Vectors
The Dot Product: Example

For the vectors

The Vector a — 6i — 3j =+ k
Scalar Product
b = 4i + 2j.

calculate a.b and find the angle between the two vectors.
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Vectors
The Dot Product: Example

For the vectors

The Vector a — 6i — 3j =+ k
Scalar Product
b = 4i + 2j.

calculate a.b and find the angle between the two vectors.

Solution

Using
a.b = a1by + asbs + ascs.

we have

ab=6x4+(-3)x2+1x(0)=18.
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Vectors
The Dot Product: Example

Solution continued

The Ve
o ector Then recall that

Scalar Product

a.b = |a||b| cosé
and since |a|] = v/46 and |b| = 2v/5 (calculated earlier) then

a.b _ 18
la|[b]  2v/5\/46

Therefore we have § = arccos (0.593) = 53.6°.

= 0.593.

cosf =
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Vectors
Another Example Using the Dot Product

The Vector
Scalar Product

Using vectors, show that if the diagonals of a rectangle are
perpendicular, then the rectangle must be a square.
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Vectors
Another Example Using the Dot Product

Note that
The Vector A b B c=a+b, d=b-a.
Scalar Product
d Now if the diagonals are
L a perpendicular then c.d = 0,
c i.e.

D b c (a+b).(b—a)=0

&
F
e
G



Vectors
Another Example Using the Dot Product

Note that
The Vector A b B C = a+b, d=b—a.
Scalar Product
d a Now if the diagonals are
2l perpendicular then c.d = 0,
c i.e.
D b c (a+b).(b—a)=0
And expanding the brackets gives
ab + |b|? —ab — |a)® =

ie. [b2=la2, = |b|=]al

i.e. the rectangle is a square.

&
F
¢
G




Vectors
Another Example Using the Dot Product

Point A, B and C' have coordinates (3,2), (4, —3), (7, —5)
respectively.

The Vector

— —

Scalar Product | Flnd AB and AC

.. - H H

ii Find AB.AC

iii Deduce the angle between AB and AC.

V.

— —
i Calculate AB and AC

—
AB = (4i — 3j) — (3i+ 2j) = i — 5]
—

C = (i — 5j) — (31 + 2j) = 4i — Tj
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Vectors
Another Example Using the Dot Product

Solution (..continued)

i Then calculate the dot product

—_— —
The Vector ABAC = 4 X ]. + (—5) X (—7) == 4 ‘I‘ 35 == 39

Scalar Product




The Vector
Scalar Product

Vectors
Another Example Using the Dot Product

Solution (..continued)
i Then calculate the dot product

—_— —
ABAC =4 x 14 (=5) x (=7) =4 + 35 = 39.

iii Now we calculate the angle: Note that

|AB| = /1% + (=5)2 = /26,
|AC| = /22 + (=7)2 = V/65.

Then we have

AB.AC 39
cosf = = = 0.949
AB||AC| V26165

Hence 6 = 18°.




Vectors

The Vector Cross Product

The cross product between two vectors is written as

axb (or sometimes aADb).

Definition
If a and b have the same or opposite direction, or one of these
vectors is zero, then

The Vector
Cross Product

v=axb=0.

Otherwise v = a x b is the vector with length equal to the area
of the parallelogram with a and b as adjacent sides and whose
direction is perpendicular to both a and b such that a, b, v (in
that order) form a right handed triad.
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Vectors
The Vector Cross Product

The Vector
Cross Product

Figure: Graphical Representation of the cross product v=ax b

e The sides a and b form a parallelogram, as shown in the
picture.
¢ Note that a x b is always a vector quantity.
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Vectors
The Vector Cross Product:

The right hand rule: a is rotated towards b through and angle
< m, then b is in the direction of the thumb.

The Vector
Cross Product
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Vectors
The Vector Cross Product:

The right hand rule: a is rotated towards b through and angle
< m, then b is in the direction of the thumb.

The Vector
Cross Product

If 6 is the angle between a and b, then the area A of the
parallelogram with sides a and b is

A = |a||b|sin6.
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Vectors
The Vector Cross Product:

As A=24; + Ay

The Vector .A] |a| Sin 0

Cross Product

1
=2X §]a]2sin9c050

+ |a|sin @ (|b| — |a| cos 0)
= |a||b| siné
= |a x b|.

la|cosg bl

Figure: Area of a Parallelogram
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Vectors
The Vector Cross Product:

As A=24; + Ay

The Vector .A] |a| Sin 0 |a|

Cross Product

1
=2X §]a]2sin9c050

+ |a|sin @ (|b| — |a| cos 0)
= |a||b| siné
= |a x b|.

la|cosg bl
Figure: Area of a Parallelogram

Thus
|[v| = |a x b| = |a|b]| sin 6.
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Vectors

Properties of the Vector Cross Product:

i Let

The Vector
Cross Product
axb=v, and bxa=w

Then by definition |v| = |w|, but

a v = —w by the right hand rule. i.e.

Yb x
3 bxaz#axb !

Figure: The Vector
Product
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Vectors

Properties of the Vector Cross Product:

ii Note that for a scalar A

(Aa) x b= A(ax b) =a x (Ab)
ax(b+c)=(axb)+(axc)
(a+b)xc=(axc)+ (bxc)

The Vector
Cross Product
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Vectors

Properties of the Vector Cross Product:

ii Note that for a scalar A

(Aa) x b= A(ax b) =a x (Ab)
ax(b+c)=(axb)+(axc)
(a+b)xc=(axc)+ (bxc)

The Vector
Cross Product

However note the unusual property
ax(bxc)#((axb)xc !
To demonstrate, first note that i x j =k, thus

ix(ixj)=ixk=-j
but (ixi)xj=0xj=0# —j.
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Vectors

Moment of a Force

The moment of a force F about a point O is
m = |F|d

where d is the perpendicular distance between O and the line
The Vector Of aCt|On Of F

Cross Product
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Vectors

Moment of a Force

The moment of a force F about a point O is
m = |F|d

where d is the perpendicular distance between O and the line
The Vector Of aCtIOh Of F

Cross Product

d=|r|sinf
= m=|r||F|sind
=|r x F|.

The vector m = r x F is the moment vector of F about O, i.e.

direction of m is given by the right hand rule.
325 /435



Vectors

Cross Product in Terms of Cartesian Components

Suppose we have vectors a and b such that

The Vector a= ali + a2j + a3k
Cross Product .b _ bli + b2j + b3k

We can show that in cartesian coordinates

axb= (agbg - a3b2)i + (agbl - albg)j + (a1b2 — agbl)k
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Vectors

Cross Product in Terms of Cartesian Components

A convenient representation is that of a 3 x 3 determinant

i j ok
axb= ay az as
b1 by b3
The Vector
Cross Product )
1.€
.| a a a a a a
axboil %2 9 |_ 13| g | @ a2
by b3 b1 b3 b1 b

where we recall that for a 2 x 2 determinant
a
c

b
d

’:ad—bc.
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Vectors
Example: Computing the Cross Product

Compute a x b, where

a=4i—-k
The Vector b = _2i +j + 3k
Cross Product <
i j k
axb=| 4 0 -1
-2 1 3

= (0.3 —(=1).1)i— (4.3 — (=1).(=2))j + (4.1 — (-2).0)k
=i—10j + 4k.
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Vectors
Example: Computing the Cross Product

Show thati x j=k

The Vector
Cross Product

329 /435



Vectors
Example: Computing the Cross Product

Show thati x j=k I

The Vector
Cross Product

— O
o o

i
ixj=|1
0

ixj=(0.0-1.0)i—(1.0-0.0)j+ (L1—-00)k=k
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Vectors
Another Example

Find the area of the triangle with adjacent sides given by

a=i+2j—-k
The Vector b :j + k‘

Cross Product
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Vectors
Another Example

Find the area of the triangle with adjacent sides given by

a=i+2j—-k
The Vector b:j+k
Cross Product o
i j ok
axb=[1 2 -1 |=3i—j+k
01 1

lax bl =+v9+4+1+1=+11= Area of parallelogram.

1 1
AA:§|aXb|:§V11
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Vectors
The Scalar Triple Product

Definition

The scalar triple product between three vectors a,b and c is

a.(b xc)

The Vector
Cross Product

which is a scalar quantity.

Note that it is a 3 x 3 determinant, i.e.

i j k
a.(bxc):(a1i+a2j+a3k). b1 by b3
1 C2 €3

ap a2 ag

=| b1 by b3

Ccl C2 C3
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Vectors
The Scalar Triple Product

Since interchanging two rows in a determinant changes it's
sign, we have

The Vector

Cross Product b (a X C) = — [a (b X C)]

etc. Also if we interchange twice we have

a.(bxc)=b.(cxa)=c.(axb).

332 /435



Vectors

The Scalar Triple Product: Geometrical Interpretation

The absolute value of a. (b X c¢) is the volume of a
parallelepiped with a, b and c as adjacent edges.

The Vector }Sj ’E
Cross Product ,x".." ,a,m:.
C o Q o
c i ’,:'
/B
R
b -
@ a A
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Vectors
The Vector Triple Product

Definition

The vector triple product is defined as
The Vector
Cross Product

b x (c x d).

Note that it is possible to show that

b x (c xd) = (b.d)c — (b.c)d.
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Vectors
The Vector Triple Product

Also note

ax (bxa)=(a.a)b— (ab)a

The Vector = |a|2b — (ab)a

Cross Product

and therefore
(a.b)a ax(bxa)

2 2
|| a|
i.e. b has been resolved into two component vectors, one

parallel to a (i.e. (a.b)a/|al?) and one perpendicular to a (i.e.
ax (b xa)/lal?).

b =
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Vectors
The Vector Triple Product: Lagrange ldentity

Take the dot product with a

The Vector a. [b X (C X d)] == (bd)aC - (bc)ad
—_——

Cross Product

Triple Scalar Product

(axb).(c xd) = (b.d)a.c— (b.c)a.d.
which is the identity of Lagrange.
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Numerical Methods: Outline of Topics

#& Introduction to Numerical Integration

2 The Rectangular Rule

& The Trapezoidal Rule

& Simpson’s Rule

@ Newton's Method for Root Finding

337 /435



Numerical Methods

Numerical Integration

Introduction to Numerical Integration

Introduction
to Numerical

Integration In many case the integral

I = /abf(ac)dac

can be found by finding a function F'(x) such that
F'(z) = f(z), and also

b
= / F(@)dz = F(b) — Fla)

which is known as the analytical (or exact) solution.
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Numerical Methods

Numerical Integration

Consider

1 1
Introductio! 2
sy / V1t 2%z, and / .
0 0

Integration
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Numerical Methods

Numerical Integration

Consider

1 1
Introductio! 2
sy / V1t 2%z, and / .
0 0

Integration

e Neither of the above integrals can be expressed in terms of
functions that we know.

e However both of these integrals exist, as they both
represent the area below the curves /1 + z3 and v’
between z =0 and z = 1.

e In many engineering applications many such integrals
occur. Therefore we use a numerical method to evaluate
the integral.
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Numerical Methods

Numerical Integration: Rectangular Rule

The Rectangular Rule:

e The interval of integration is divided into n equal
subintervals of length h = (b — a)/n, and we approximate
f in each subinterval by f(z}), where z7 is the midpoint

The .
Rectangular of the interval

Rule
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Numerical Methods

Numerical Integration: Rectangular Rule

The Rectangular Rule:

e The interval of integration is divided into n equal
subintervals of length h = (b — a)/n, and we approximate
f in each subinterval by f(z}), where z7 is the midpoint

The of the interval

Rectangular
Rule
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Numerical Methods

Numerical Integration: Rectangular Rule

o Each rectangle has area f(z1%)h, f(x2%)h, ..., f(zp*x)h

The
Rectangular
Rule

341 /435



Numerical Methods

Numerical Integration: Rectangular Rule

e Each rectangle has area f(x1%)h, f(xox)h,.
e Therefore we can say that

b
- g= / F(@)dz ~ h[f(z1#) + f(za) + - + fzn*)]

Rectangular
Rule

where h = (b—a)/n
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Numerical Methods

Numerical Integration: Rectangular Rule

o Each rectangle has area f(z1%)h, f(x2%)h, ..., f(zp*x)h

e Therefore we can say that

b
- g= / F(@)dz ~ h[f(z1#) + f(za) + - + fzn*)]

Rectangular
Rule

where h = (b—a)/n

e The approximation on the RHS becomes more accurate
the more rectangles that are used. In fact

b
[ e = Jim (b ($ ) + Floar) -+ Sone)])

(where we note that as h — 0,n — o0, i.e. hn=b—a
with b — a fixed.
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Numerical Methods

Numerical Integration: Trapezoidal (or Trapezium) Rule

The Trapezoidal Rule
e Here the interval a < x < b is divided into n equal
subintervals, i.e.

A< <9< ...<Tp-1<b

each with length h = (b —a)/n.

The
Trapezoidal

Rule Y /\ / e The figure shows

that the area
under the curve
can be
approximated by
the sum of n
trapezoids.

a x x2 Tp-1}p
342 /435



Numerical Methods

Numerical Integration: Trapezoidal (or Trapezium) Rule

Area of first Trapezoid = A; = area
of rectangle + area of triangle, i.e.

f(z1) )
Ar = f(a)h + §(f(x1) — f(a))

= ShIf@) + SG)].

The
Ut Area of next Trapezoid = A3 is

Ay = Sh1f(n) + fa2)]

1
Area of next to last trapezoid = §h [f(zn—2) + f(xn_1)]

Area of last trapezoid = %h [f (zp—1) + f(b)]
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Numerical Methods

Numerical Integration: Trapezoidal (or Trapezium) Rule

b
54 :/ f(x)dz =~ Sum of all Trapezoids
a

SIA(@) (1) + F(0) + () + )
The T +f(xn—2) + f(xn—2) + f($n—1) + f(wn—l) + f(b)}

Trapezoidal
Rule
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Numerical Methods

Numerical Integration: Trapezoidal (or Trapezium) Rule

b
54 :/ f(x)dz =~ Sum of all Trapezoids
a

S AF(@) + flon) + Fw) + flza) + Flo2) +--
o f(on—2) + f(en_2) + f(xn-1) + f(zn-1) + f(b)}

i.e.

7~ g{f(a) + f(b)+2[f(x1) + flxa) + -+ fzn-1)]}-

where

h=(®b-a)/n xi=a+ih, 1<i<n-—1.
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Numerical Methods

Numerical Integration: Example Using the Trapezoidal Rule

Estimate

y:/Qd_””
1

using the trapezoidal rule with n = 5.

The
Trapezoidal
Rule
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Numerical Methods

Numerical Integration: Example Using the Trapezoidal Rule

Estimate
- / S
1 95
using the trapezoidal rule with n = 5.
The
e
Y Note that we have
_1 b=2,a=1and n=>5.
Therefore
b—a 2-—-1 1
h = = — =-=0.2.
n 5 5
1 2 z J
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Numerical Methods

Numerical Integration: Example Using the Trapezoidal Rule

Solution (..continued)

a=1,21=12,20 =14,23 =1.6,24 = 1.8,b=2.
Then

The

Eal 7~ () + () + 2 (Fw) + (o) + f(w0) + (@)
= 0.1 [f(1) + f(2) +2(£(1.2) + f(14) + J(16) + F(1.8))]
_l’_

11 11 11
—01l=+Z= T T S T
0 [1+2+2< +t17 16t )]

~ 0.6956 To4d.p

—~
=
I
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Numerical Methods

Numerical Integration: Comments on the Last Example

e Note that in the last example the analytical value is given
by

2
1
i /—dx:[hmﬁ:1n2—1n1:1n2:0.6931 To 4.d.p.
1 X

Trapezoidal
Rule
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Numerical Methods

Numerical Integration: Comments on the Last Example

e Note that in the last example the analytical value is given
by

2
1
i /1 —dz=[nz]] =In2-Inl=1n2=0.6931 To 4.d.p.

Trapezoidal T

Rule
e Also note that if we were to use n = 10 then we would get

4 ~ 0.6938

i.e. better accuracy.
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Numerical Methods

Numerical Integration: Error in Using the Trapezoidal Rule

o Let .# be the trapezoidal approximation to .#, then we

define the error 7 as

=g 7,

IS (where we do not mean ¢ to the power T').

Trapezoidal
Rule
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Numerical Methods

Numerical Integration: Error in Using the Trapezoidal Rule

o Let .# be the trapezoidal approximation to .#, then we
define the error €7 as

=g 7,

IS (where we do not mean ¢ to the power T').

Trapezoidal

Rule e It is possible to show that if

‘f”(:v)‘ <M Vx € [a, b
then

(b—a)’

T < M
= Mo s
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Numerical Methods

Numerical Integration: Error in Using the Trapezoidal Rule Example

What is the smallest n such that
2 2
54 :/ e’ dx
The 0
Trapezoidal i
Rule has a maximum error of 17 |
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The
Trapezoidal
Rule

Numerical Methods

Numerical Integration: Error in Using the Trapezoidal Rule Example

What is the smallest n such that

22
ﬂ:/exdaz
0

has a maximum error of 17 |

We must choose n large enough such that |¢7| < 1. Note that

fl)=e" = f'(z)=[2+42?] e’
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Numerical Methods

Numerical Integration: Error in Using the Trapezoidal Rule Example

Solution (..continued)

From 0 < 2 < 2 the maximum value of f”(x) occurs when
x =2, and thus M = f"(2) ~ 983 (rounded up).

The
Trapezoidal
Rule
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The
Trapezoidal
Rule

Numerical Methods

Numerical Integration: Error in Using the Trapezoidal Rule Example

Solution (..continued)

From 0 < 2 < 2 the maximum value of f”(x) occurs when
x =2, and thus M = f"(2) ~ 983 (rounded up).
Therefore we have

b—a)® 2 655
Ty« 0= _geq 2 655
] < M=o <985 5~ 5

i.e we require

65
—2531 or n22655
n

and the smallest such n that satisfies this is n = 26.
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Numerical Methods

Numerical Integration: Simpson’s Rule

Simpson’s Rule

Simpson'’s rule is another method of numerical integration. It is
credited to Thomas Simpson (1710-1761), an English
mathematician, though there is evidence that similar methods
were used 100 years prior to him.

Sl So far we have looked at two methods for numerical integration

e Piecewise constant approximation = Rectangular Rule
e Piecewise linear approximation = Trapezoidal Rule

e Piecewise quadratic approximation = Simpson's Rule

351 /435



Numerical Methods

Numerical Integration: Simpson’s Rule

e For Simpson'’s rule we divide a < z < b into an even
number of subintervals 2n of length h = (b — a)/2n with
endpoints a = xg, 1,22,...,%2,_9,L2n_1,0 = Top

e Three points describe a parabola: az? + bz + ¢

y ?\ /"

Simpson's 7) . -
Rule :
£ N

. 11‘71562‘1‘3334‘ —f—t—F+— f b
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Numerical Methods

Numerical Integration: Derivation of Simpson’s Rule

Please note that the following derivation is for your interest
only and is not examinable. However you should ensure that
you learn the result.

For zg <z < x9 = xg+ 2h it is possible to show that

(x —x1)(x — 22) (x — xo)(x — 22)

Pi(x) = 0+ 1
Simpson's (@) (xo — 1) (20 — 22) d (x1 — o) (21 — x2) /
Rule ~~

2h2 —h?

(x —xo)(x — 1)
(22 — wo)(z2 — 21)

~

fa.

2h2
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Numerical Methods

Numerical Integration: Derivation of Simpson’s Rule

Let s = (z — 1) /h, then

T—zo=x—x1+x1—20=hs+h="h(s+1)
r—x1 = sh
r—xy=(x—x1)+ (1 —22) =sh—s=(s—1)h.

Simpson's

Rule then

Py =gs(s = 1)fo— (s + Dls — Dfs + 55+ sy
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Numerical Methods

Numerical Integration: Derivation of Simpson’s Rule

/;2 f(z)dz ~ /x:z Py (z)dz = /_11 P1(s)hds

where we have used dz = hds,x = zg = s = —1, and
r=x9=s=1.

Simpson's
Rule
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Numerical Methods

Numerical Integration: Derivation of Simpson’s Rule

/;2 f(z)dz ~ /x:z Py (z)dz = /_11 P1(s)hds

where we have used dz = hds,x = zg = s = —1, and
r=x9 = s=1. Hence we have

=B [5-5] i
Pu N A
/ 1( 52, bil 3 3_1

Simpson's 1
Rule f2 h |: 82 :|
1

R )

foh 4 fah
3 + f1h+ 3

Zg[f0+4f1+f2]-
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Numerical Methods

Numerical Integration: Derivation of Simpson’s Rule

A similar formula holds for 9 < x < z4 etc. Hence we have
Simpson’s formula

b
/ f(z)dz = g [fo + fon +4(fr + f3+ -+ fon—3 + fon—1)

Simpson's + 2 (f2 + f4 + e + f27‘b—2)
Rule
where )
a
h=—— and f;=f(z).

n
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Numerical Methods

Numerical Integration: Simpson’s Rule Algorithm

rule is to use the following algorithm.

Given function values f; = f(x;) at z; = a + jh for
j=0,1,...,2n, where h = (b — a)/2 Compute

So = fo+ fon
;illeepson's Sl — fl + f3 _|_ . + f2n_1
So=fo+ fa+- -+ fono

then 5
I = 3 (S0 +481 +2855).

A good way of computing a numerical integral using Simpson's
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Numerical Methods

Numerical Integration: Error Using Simpson’s Rule

It can be shown for Simpson'’s rule that if
fY@)| <M Vzelab

then
Simpson's

_ 4)0
Rule |€S’ S M

2880n4
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Numerical Methods

Numerical Integration: Example Using Simpson’s Rule

Evaluate

2
ﬂz/ldm
1 X

using Simpson’s rule with 2n = 10,a = 1,b = 2..

Simpson's
Rule
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Numerical Methods

Numerical Integration: Example Using Simpson’s Rule

Evaluate
25
J:/ —dz
1 &L

using Simpson’s rule with 2n = 10,a = 1,b = 2..

v

Simpson's
Rule Y Note that we have
_1 b=2,a=1 and 2n = 10.
* Therefore
b—a 2-1
h = = — =0.1.
2n 10
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Numerical Methods

Numerical Integration: Example Using Simpson’s Rule

Solution (..continued)

J % flaj) =1/z;

0 1.0 | 1.000000

1 11 0.909091

2 12 0.833333

3 13 0.769213

4 14 0.714286
Sz 5 15 0.666666

6 16 0.625000

7017 0.588235

8 18 0.555555

9 19 0.526316

10 2.0 | 0.500000

| Sums  1.5000000 3.459539 2.728174 |

y
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Numerical Methods

Numerical Integration: Example Using Simpson’s Rule

Solution (..Continued)

i.e.

Sp = 1.500000
S1 = 3.459539
So = 2.728174

Therefore we have

Simpson's
Rule

I = g (So + 481 + 285) = 0.693150.

v
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Numerical Methods

Numerical Integration: Example Using Simpson’s Rule

Solution (..Continued)

i.e.

Sp = 1.500000
S1 = 3.459539
So = 2.728174

Therefore we have

Simpson's
Rule

I = g (So + 481 + 285) = 0.693150.

Note from earlier that

2
S = / d—$ =In2 = 0.69314718
1 X

v
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Numerical Methods
Root Finding: Newton's Method

Newton’s Method for Root Finding

e In engineering often it is required to find x such that

f(x)=o. (24)

For example
® 22— 3z +2=0 (easy)
® sinx = %x

Newton's © coshzcoszr = -1

Method for
Root Finding
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Numerical Methods
Root Finding: Newton's Method

Newton’s Method for Root Finding

e In engineering often it is required to find x such that

f(x)=o. (24)

For example
® 22— 3z +2=0 (easy)
® sinx = %x

Newton's e coshxcosx = —1
Method for

Root Finding e Note that all of the above equations can be written in the
form (24).
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Newton's
Method for
Root Finding

Numerical Methods

Root Finding: Newton's Method

Let an initial guess to the root
be zg. Then z1 is the point of
intersection of x axis and the
tangent to the curve f at xg.

To 21 T0 T
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Numerical Methods

Root Finding: Newton's Method

Let an initial guess to the root
be zg. Then z1 is the point of
intersection of x axis and the
tangent to the curve f at xg.

f(zo)

o — T1

tan § = f'(z0) =

I'g 1 ro x T =T —

Newton's /
Method for f ('TO)
Root Finding
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Numerical Methods

Root Finding: Newton's Method

Let an initial guess to the root
be zg. Then z1 is the point of

intersection of x axis and the
y tangent to the curve f at xg.
T
tanﬂ — f/(ajo) — M
o — X1
ie.
- : f (o)
ewton's L2 L1 Zo z T1 = Tg —
I\N/Ietl;(od for f, ('TO)
Root Finding
For the next iteration
f(z1)
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Numerical Methods

Root Finding: Newton's Method

Let an initial guess to the root
be zg. Then z1 is the point of

intersection of x axis and the
y tangent to the curve f at xg.
T
tanﬂ — f/(ajo) — M
o — X1
ie.
. : f (o)
ewton's 2 ! Lo T Tl = Ty —
I\N/Ietl;(od for f, ('TO)
Root Finding
And then for the next iteration
f(x2)

T3 = T2 —

363 /435



Newton's
Method for
Root Finding

Numerical Methods

Root Finding: Newton's Method

Let an initial guess to the root
be zg. Then z1 is the point of
intersection of x axis and the
tangent to the curve f at xg.

y=1@) i / tan 8 = f'(zo) = E)

o — T1

: ,,,:;:"':fll i.e.
Iz 33/6\ 33:0 T T =70 — f (o)
f'(@o)
i.e. Just keep iterating until we get the desired accuracy

Tntl = Tp — f’(.ﬁlﬁ )
n
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Numerical Methods
Root Finding: Example Using Newton's Method

Find the positive solution of

2sinx = x

Newton's
Method for
Root Finding
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Numerical Methods
Root Finding: Example Using Newton's Method

First let’'s draw a sketch.

y==x
The solution we are
trying to find is the
y =2sinzx positive = value of the
Method for _ point of intersection,
oot Finding z a = 97 % shown in the picture.

4
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Numerical Methods
Root Finding: Example Using Newton's Method

Solution (Continued..)

We write

f(z) =z —2sinz (i.e. We want f(z) =0)
= f'(x) =1—2cosz.

Newton's
Method for
Root Finding
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Numerical Methods
Root Finding: Example Using Newton's Method

Solution (Continued..)
We write

f(z) =z —2sinz (i.e. We want f(z) =0)
= f'(x) =1—2cosz.

Newton's method gives

T, — 2sinx,
Newton's Bl = Ty = =
Method for a 1 —2cos I

Root Finding .
2(sin zp, — xy, COS T,

Ny
1—2coszy, D,
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Numerical Methods
Root Finding: Example Using Newton's Method

Solution (Continued..)

Start off with an initial guess, say g = 2.

n Tn Ny, D, Tn+1 = Nn/Dn

0 200 3483 1.832 1.901
1 1901 3.125 1.648 1.896
2 1896 3.107 1.639 1.896

Newton's
Method for

et (il The actual solution to 4 d.p is 1.8955.
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Probability and Statistics: Outline of Topics

& Basic Probability

& Introduction to Random Variables

@ The Binomial Distribution

@ The Poisson Distribution

& Statistical Regression
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Probability and Statistics

Introduction to Basic Ideas

Basic

Probability For an event F, the probability of the event E occurring,
denoted P(FE), is a number such that

0<PE)<I.
where

P(E) = 0 = E isimpossible,
P(E) = 1 = E iscertain.
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Probability and Statistics

Example involving the rolling of a die

Basic Example (Rolling a die)

Probability
The set of possible outcomes is the sample space, denoted S,

i.e.
S=1{1,2,3,4,5,6}

Let A be the event of getting an even number in one roll, so
A=1{2,4,6}

and therefore 3
P(A) = - =
(4) ==
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Probability and Statistics

Example Involving Determining the Number of Defective Gaskets

We randomly select 2 gaskets from a set of 5 gaskets
Probability (numbered 1 to 5). The sample space consists of 10 possible
outcomes

Basic

S = {{17 2}7 {1’3}7 {174}’ {17 5}7 {273}7
{2,4},{2,5},{3,4},{3,5},{4,5}},

and note that |S| = 10 is the number of elements in S, also
known as the cardinality of the set S.

V.
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Probability and Statistics

Example Involving Determining the Number of Defective Gaskets

We randomly select 2 gaskets from a set of 5 gaskets
Probability (numbered 1 to 5). The sample space consists of 10 possible
outcomes

Basic

S = {{17 2}7 {1’ 3}7 {17 4}7 {17 5}7 {27 3}7
{2,4},{2,5},{3,4},{3,5},{4,5}},
and note that |S| = 10 is the number of elements in S, also

known as the cardinality of the set S. We may be interested
in the following events

A: No defective gasket
B: One defective gasket

C: Two defective gaskets

V.
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Probability and Statistics

Example Involving Determining the Number of Defective Gaskets
(continued...)

Example (...continued)

Assuming that 3 gaskets, say 1,2,3 are defective, we see that

Basic
Probability
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Basic
Probability

Probability and Statistics

Example Involving Determining the Number of Defective Gaskets
(continued...)

Example (...continued)
Assuming that 3 gaskets, say 1,2,3 are defective, we see that
Event A occurs if we draw {4,5} and therefore

_1
107

Event B occurs if we draw {1,4},{1,5},{2,4},{2,5},{3,4}
or {3,5} and therefore

P (4)

6
107

Event C occurs if we draw {1,2},{1,3},{2,3}, and therefore

P (B)

3
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Probability and Statistics

Introducing the Event Compliment

Definition

Bacic The set of all elements (outcomes) not in E in the sample
Pzl space S is called the compliment of E, usually denoted E° or
E.
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Probability and Statistics

Introducing the Event Compliment

Definition

Bacic The set of all elements (outcomes) not in E in the sample
Pzl space S is called the compliment of E, usually denoted E° or

Example

FE : randomly rolled die gives an even number, i.e.
E =1{2,4,6}
then E€ : randomly rolled die gives an odd number, i.e.

E°={1,3,5}
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Probability and Statistics

The Union of Two Events

Let A and B be two events in an experiment.

Definition: Union of Two Events
Probability The event consisting of all the elements of the sample space
that belong to either A or B is called the union of A and B

and is denoted

Basic

AUB

o
3THTA35




Probability and Statistics

The Union of Two Events

Let A and B be two events in an experiment.

Definition: Union of Two Events
Basic
Probability The event consisting of all the elements of the sample space
that belong to either A or B is called the union of A and B

and is denoted
AUB

AUB
Figure: A Vector

o
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Probability and Statistics

The Intersection of Two Events

Definition: Intersection of Two Events

The event consisting of all the elements of the sample space
that belong to either A and B is called the intersection of A
and B and is denoted

Basic
Probability

ANB

o’
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Probability and Statistics

The Intersection of Two Events

Definition: Intersection of Two Events

The event consisting of all the elements of the sample space
that belong to either A and B is called the intersection of A
and B and is denoted

Basic
Probability

ANB

ANB
Figure: A Vector
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Probability and Statistics

The Union and Intersection of Two Events: Pictorially using Venn diagrams

Basic
Probability

Venn diagrams to go here
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Probability and Statistics

The Union and Intersection of Two Events: Example

Basic

Probability Exam pIe

Suppose that we are rolling a die, then consider the following
events

A: The die gives a number not smaller than 4.
B: The die gives a number that is divisible by 3
A={4,5,6}, B=1{3,6}

then

AUB={3,4,5,6}, ANB=/{6}
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Probability and Statistics

Definition: Mutually Exclusive Events

Basic
Probability

Definition: Mutually exclusive events

Events A and B are said to be mutually exclusive events if
they have no element in common, i.e. if

AUB={}=0,

where the symbol () denotes the empty set.
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Probability and Statistics
The Axioms of Probability

Efg{;bmty @ If E is any event in a sample space .S, then
0<P(E)<I.
@® To the entire sample space S there corresponds
P(S)=1.

® If A and B are mutually exclusive events, then

P(AU B) = P(4) + P(B).

379 /435



Probability and Statistics

Consequences of the Axions of Probability

- Fact: Direct Consequence of Axiom 3

Probability If E1, Fo, ..., E, are mutually exclusive events, then

P(E1UE;U...UE,) = P(E1)+P(E2)+---+P(Ey)

n

= ) P(E).

i=1

If A and B are any events, then

P(AuB)=P(A)+P(B)-P(ANB)
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Probability and Statistics

Consequences of the Axions of Probability

Basic
Probability

Fact: Event Compliments
P(E)=1-P(E°).

i.e. the probability of £ occurring is 1— the probability of E
not occurring.
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Probability and Statistics

Example

Basic Rolling a die one has the event space
Probability

S =1{1,2,3,4,5,6}

with P(1) = 1/6,P(2) = 1/6, ... etc.

y
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Probability and Statistics

Example

Basic Rolling a die one has the event space
Probability

S =1{1,2,3,4,5,6}

with P(1) =1/6,P(2) = 1/6,... etc.
A: The event that an even number is given

P(A) = P(2) + P(4) + P(6) = %

y
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Probability and Statistics

Example

Basic Rolling a die one has the event space
Probability

S =1{1,2,3,4,5,6}

with P(1) =1/6,P(2) = 1/6,... etc.
A: The event that an even number is given

P(A) = P(2) + P(4) + P(6) = %

B: The event that a number greater than 4 turns up

P(B) = P(5) + P(6) = %

y
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Probability and Statistics

Example

Basic

Question: Five coins are tossed simultaneously. What is the
probability of obtaining at least one head?

Probability Example
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Probability and Statistics

Example

Basic

Probability Example

only one of these has no heads. Therefore

Question: Five coins are tossed simultaneously. What is the
probability of obtaining at least one head?

Note that there are in total 2° = 32 possible outcomes, and

P(At Least One Head) = 1 — P(No Heads)

1 31
32 32
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Probability and Statistics

Example

Example

Basic Question: The probability that a person watches TV
Fropbity P(T) = 0.6; The probability that the same person listens to the
radio P(R) = 0.3; The probability that they do both is 0.15.
What is the probability that they do neither?

o’
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Probability and Statistics

Example

Example

Basic Question: The probability that a person watches TV
Fropbity P(T) = 0.6; The probability that the same person listens to the
radio P(R) = 0.3; The probability that they do both is 0.15.
What is the probability that they do neither?

Using the addition law

P(TUR) = P(T)+P(R)—P(I'NR)
0.6 + 0.3 — 0.15 = 0.75

and therefore

P(They do neither) =1 - P(T'U R) = 0.25.

o’
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Probability and Statistics
Conditional Probability

Basic

Probability e Often it is required to find the probability of an event B
given that an event A occurs.

385 /435



Probability and Statistics
Conditional Probability

Basic

Probability e Often it is required to find the probability of an event B
given that an event A occurs.

e This is known as the conditional probability of B given A,
and is denoted P(B|A).
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Probability and Statistics
Conditional Probability

Basic

Probability e Often it is required to find the probability of an event B
given that an event A occurs.

e This is known as the conditional probability of B given A,
and is denoted P(B|A).

e A gives a reduced sample space, and therefore

P(ANB)

P(BIA) =~ 5

for P(A) # 0.
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Probability and Statistics
Conditional Probability

Example (Conditional Probability)

ey Question: The probability P(A) that it rains in Manchester on
July 15th is 0.6. The probability P(A N B) that it rains there
on both the 15th and 16th is 0.35. Given that it rains on the
15th, what is the probability that it rains the next day?

Basic
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Probability and Statistics
Conditional Probability

Example (Conditional Probability)

ey Question: The probability P(A) that it rains in Manchester on
July 15th is 0.6. The probability P(A N B) that it rains there
on both the 15th and 16th is 0.35. Given that it rains on the
15th, what is the probability that it rains the next day?

Basic

We are required to find P(B|A), and using the formula for
conditional probability
PANB 035 7

Rk Tt =0.583 (3d.p)

P(B|A) =
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Probability and Statistics

Examples on Conditional Probability

Example

" Question: A fridge contains 10 cans of larger, three of which
Probabilty are “4X" (to be avoided). Find the probability that if 2 cans are
selected at random that none of the selected cans are “4X".

4
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Probability and Statistics

Examples on Conditional Probability

Example

" Question: A fridge contains 10 cans of larger, three of which
Probabilty are “4X" (to be avoided). Find the probability that if 2 cans are
selected at random that none of the selected cans are “4X".

Let A = First can selected is not a 4X,

B = Second can selected is not a 4X.

4
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Probability and Statistics

Examples on Conditional Probability

Example

" Question: A fridge contains 10 cans of larger, three of which
Probabilty are “4X" (to be avoided). Find the probability that if 2 cans are
selected at random that none of the selected cans are “4X".

Let A = First can selected is not a 4X,

B = Second can selected is not a 4X.

i First we consider the case with replacement: It is clear that
3 pB)==
10 10

P(AﬁB):1—7O><1—7O:O.49.

P(A) =

4
387 /435



Probability and Statistics

Examples on Conditional Probability

Basic
Probability

Example (...continued)

ii Now we consider the case where the cans are not replaced.
Then we have

7 6 2
P(A)= -~ P(BJA)=-="=
(W)=, P(BlA) =
P(AN B) = P(A) P(B|A)

7 6 14
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Probability and Statistics: Probability Distributions

Introduction to Random Variables

A random variable X is a variable whose (real) value results
Introduction
P from the measurement of some random process.

Variables

Suppose an experiment is done and an event corresponding to
a number a occurs, i.e. the random variable X has taken the
value a, meaning

X =a with probability P(X =a).
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Probability and Statistics: Probability Distributions

Introduction to Random Variables

@ The probability that X assumes any value a < X < b is
Pla< X <b)
Introduction

Ty ® The probability that X < ¢ is denoted P(X < ¢)
Variables
©® The probability that X > ¢ is denoted P(X > ¢)
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Probability and Statistics: Probability Distributions

Introduction to Random Variables

@ The probability that X assumes any value a < X < b is
Pla< X <b)
Introduction

Ty ® The probability that X < ¢ is denoted P(X < ¢)
Variables
©® The probability that X > ¢ is denoted P(X > ¢)

Also please note that
P(X<¢)+P(X>c¢c)=P(—o0o< X <o0)=P(5) =1
or equivalently

P(X >¢)=1-P(X <c¢).
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Probability and Statistics: Probability Distributions

Introduction to Random Variables

Let the random variable X be defined as

Introduction
to Random

Vi Bl X = Score obtained on the random throw of a fair die.

391 /435



Probability and Statistics: Probability Distributions

Introduction to Random Variables

Let the random variable X be defined as

Introduction
to Random

Vi Bl X = Score obtained on the random throw of a fair die.

Then we have
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Probability and Statistics: Probability Distributions

Introduction to Random Variables

Let the random variable X be defined as

Introduction
to Random

Vi Bl X = Score obtained on the random throw of a fair die.

Then we have

P(X=1)= P1<X<2) =

DN | =

1
67
P(1<X <2)=0, P(X < 0.5) = 0.

Random variables may be discrete (such as in the example

above) or continuous. In this course we only consider discrete
random variables.
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Probability and Statistics: Probability Distributions

Discrete Random Variables

For a discrete random variable X

@ The number of values for which X has a probability
different from zero is finite or countably infinite.

e ® If the interval a < X < b does not contain such a value,

to Random

Variables then P(a < X < b) =0.
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Probability and Statistics: Probability Distributions

Discrete Random Variables

For a discrete random variable X
@ The number of values for which X has a probability
different from zero is finite or countably infinite.

IntreeliEten ® If the interval a < X < b does not contain such a value,

to Random

Variables then P(CL < X < b) =0.

Definition

Let x1,x9, ... be the values of X which have probabilities
P1,Po, ..., then the probability distribution function
(sometimes abbreviated p.d.f) f(z) is defined as

| P; when X = z;
f(z) = { 0 otherwise

Note that is is required that >°22, f(z;) = 1.

v
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Probability and Statistics: Probability Distributions

Discrete Random Variables: Rolling a die

f(x)

B
6
Introduction
to Random
Variables
.

T T > T

123456789

Figure: PDF of the score on the rolling of a fair die

e This particular example is a uniformly distributed random
variable.

e The p.d.f determines the distribution of the random
variable X.
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Probability and Statistics: Probability Distributions

Discrete Random Variables: Rolling two dice

{o Rando Rolling two dice gives 36 possible outcomes, all with probability
1/36. So we let the random variable = be defined as

Introduction
to Random

x = Score obtained when randomly rolling two fair dice.

v |2 3 4 5 6 7 8 9 10 11 12
1 2 3 4 5 6 5 4 3 2 1
@)% %2 %2 5 5 5 5 % % %2 %
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Probability and Statistics: Probability Distributions

Discrete Random Variables: Rolling two dice

Example (Continued)

Introduction
to Random
Variables

1 234 5 6 7 89 101112 13 14 15 >

Figure: PDF of the score obtained when rolling two fair dice
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Probability and Statistics: Probability Distributions

Discrete Random Variables: p.d.f's

Introduction
to Random
Variables

Suppose X = {0,1,2,3}. Are the following functions possible
probability distribution functions?

i f(x) %(1+x)
i f(z)=1:5(1+x)
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Probability and Statistics: Probability Distributions

Discrete Random Variables: p.d.f's

For the first function

Introduction Pl = =y
to Random 8
Variables

3 4
2 3 8’ 4 R

. 10
and then ZPi =5 £1
i=1

= this cannot be a probability distribution function.

y
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Probability and Statistics: Probability Distributions

Discrete Random Variables: p.d.f's

For the first function

Introduction Pl = =y
to Random 8
Variables

3 4
2 3 8’ 4 R

. 10
and then ZPi =5 £1
i=1

= this cannot be a probability distribution function.
For the second case, it is simple to show that

and hence this function can be a p.d.f.

y
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Probability and Statistics: Probability Distributions

Discrete Random Variables: Mean and Variance

Introduction

to Random Definition

Variables

The mean, expectation, or expected value y of a discrete
distribution is given by

p= Z%‘f(inj) =z1f(21) + T2 f (T2) +--- .
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Introduction
to Random
Variables

Probability and Statistics: Probability Distributions

Discrete Random Variables: Mean and Variance Examples

Example
What is the mean/expected value on the rolling of a fair die?
Recall that
1 .
iflang) = 5 for 7=1,2,...,6.

Then

—1><1—|—2><2+3><3—|—4><4+5><5—|—6><6—35
H="%% 6 6 6 6 6 >

399 /435



Introduction
to Random
Variables

Probability and Statistics: Probability Distributions

Discrete Random Variables: Mean and Variance Examples

Tossing a coin. Let

X = number of heads in a single toss,

i.,e. X =0or X =1. Then if the die is fair
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Introduction
to Random
Variables

Probability and Statistics: Probability Distributions

Discrete Random Variables: Mean and Variance Examples

Example

Tossing a coin. Let

X = number of heads in a single toss,

i.,e. X =0or X =1. Then if the die is fair

And so for the expected value p

1 11
—O0X~+1X==-=
p=0xgrlxg=3
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Probability and Statistics: Probability Distributions

Discrete Random Variables: Note on the Expectation

Introduction
to Random
Variables

In both the previous examples p is not realisable in a single
experiment. Rather, it represents the average “score” if the
experiment were repeated many times.
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Probability and Statistics: Probability Distributions

Discrete Random Variables: Note on the Expectation

Introduction Exa m ple

to Random

Variables Suppose we have a game that involves drawing a ball from a
bag that contains 6 white balls and 4 blue balls.

e If the ball is white, you win 40p
e |f the ball is blue, you loose 80p

The ball is then replaced. What are your expected winnings?

<
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Probability and Statistics: Probability Distributions

Discrete Random Variables: Introducing the Variance

Let X = the winnings obtained after drawing the ball out, then

Introduction 6

to Random For X = T = 40 with P(x]_) — E’

Variables
. 4
For X =29 = —80 with P(xq) = 10"

and therefore for the expected value

6 4
,u:le(a:l)-l—ng(xg):l—O ><40—|—1—0 x —80 = —8

which means that in n games you would expect to loose 8np,
— don't play!
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Probability and Statistics: Probability Distributions

Discrete Random Variables: Introducing the Variance

Definition: Variance

The variance of a distribution, denoted o2 (or Var(X)) is
to Random defined by

Introduction

o = Var(X) = 3 (a; — w)* /()
J
= (z1 — )2 f(z1) + (w2 — w)?f(22) + - .
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Probability and Statistics: Probability Distributions

Discrete Random Variables: Introducing the Variance

Definition: Variance

: The variance of a distribution, denoted o2 (or Var(X)) is
o Ratom defined by

o = Var(X) = 3 (a; — w)* /()
J
= (z1 — )2 f(z1) + (w2 — w)?f(22) + - .

The variance can be thought of as a measure of how far the
data is spread out. More specifically, it is the expectation (or
mean) of the squared deviation of that variable from its
expected value or mean.
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Probability and Statistics: Probability Distributions

Discrete Random Variables: Variance continued

Note that

o? = Z (asj2 — 2z + ,u2) flxj)

Introduction
to Random

J
=D flag)af =2y s flag) + D f ()
- if(wj)w? — 2 + 2 j
- if(xj)xﬁ — i
= EJ(X2) —u?

where E(X?) is the expected value of X2. This is useful for
calculation purposes.
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Probability and Statistics: Probability Distributions

Discrete Random Variables: Variance continued

The positive square root ¢ of the variance is known as the
standard deviation.

Example (Tossing of a coin)

Introduction
to Random

Variables We know that p = % and so using 0% = > (@i — w2 f(z5)
gives
1\* 1 1\ 1 1
=(0—-= - 1-= S
(0 2)X2+< 2>X2 4

alternatively we can use 02 = E(X?) — p? to give

1 1 12 1
2 2 2

= - 1 == = = =
g 0><2—|— ><2 ()
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Probability and Statistics: Probability Distributions

The Binomial Distribution

Suppose an experiment (trial) has 2 outcomes that can be
labelled 'success’ or 'failure’ with probabilities p and g =1—1p

respectively.
The Binomial
Distribution

For example, throwing of a 6, with p = %, ¢ =

[ep[S)

If we repeat such a trial a fixed number of times, say n times,
we can define a new discrete random variable which is the
number of successes in n trials.
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Probability and Statistics: Probability Distributions

The Binomial Distribution

Four conditions must be satisfied.
@ The trial must only have two outcomes
® The number of trials must be fixed

The Binomial © The probability of success must be the same for all trials

Distribution

O The trials are independent.
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Probability and Statistics: Probability Distributions

The Binomial Distribution

Four conditions must be satisfied.
@ The trial must only have two outcomes
® The number of trials must be fixed

The Binomial © The probability of success must be the same for all trials

Distribution

O The trials are independent.

Find the probability of 0,1,2,4 successes in an experiment
consisting of up to 4 repeated trial with probability of success p

(¢=1-p).
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Probability and Statistics: Probability Distributions

The Binomial Distribution

Number of Trials

Number of Successes

The Binomial 0
Distribution

1
2
3
4

O O oRv K

2 2
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Probability and Statistics: Probability Distributions

The Binomial Distribution

In general for P(X = z), i.e. the probability of = successes in n
trials is given by

. n _
I i PO =)= fia) = (%)
where (Z) is the binomial coefficient.

The distribution determined by the above distribution function
is called the Binomial Distribution
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Probability and Statistics: Probability Distributions

The Binomial Distribution: Binomial Coefficient

Note that the binomial coefficient is given by

()=

which is sometimes written C7, or "C,, and is the number of
ways of choosing x objects from a set containing n objects.

The Binomial
Distribution
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Probability and Statistics: Probability Distributions

The Binomial Distribution: Example on the Binomial Distribution

A die is thrown 56 times. Find the probability of obtaining at
least three sixes

The Binomial
Distribution
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Probability and Statistics: Probability Distributions

The Binomial Distribution: Example on the Binomial Distribution

least three sixes

A die is thrown 56 times. Find the probability of obtaining at

Solution

e Define a random variable X as

Distribution

X = number of sixes thrown in 56 trials.

Then we can say that

1
X ~ Binom (n =56,p = 6)

which should be read as “X follows a binomial distribution

with 56 trials and probability of success = %

y
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Probability and Statistics: Probability Distributions

The Binomial Distribution: Example on the Binomial Distribution

...Solution continued

P(obtaining at least 3 sixes) = 1 — P(obtaining 0,1 or 2 sixes)

The Binomial .
Distribution l.€.

OO0 0]

Note that it is acceptable to leave your answer in this form
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Probability and Statistics: Probability Distributions

The Binomial Distribution: More Examples on the Binomial Distribution

Example

Of a large number of mass-produced machine component, 10%
are defective; Find the probability that a random sample of
twenty components will contain

The Binomial . .
Distribution I Exactly 3 defective components

ii More than 3 defective components

Solution

Let X = number of defective components in a random sample
of 20. Then

X ~ Binom(20,0.1)
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Probability and Statistics: Probability Distributions

The Binomial Distribution: More Examples on the Binomial Distribution

Example continued

i We require P(X = 3), which is given by

P(X =3) = (23()) (0.1)3(0.9)" ~ 0.190.

The Binomial
Distribution

4
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Probability and Statistics: Probability Distributions

The Binomial Distribution: More Examples on the Binomial Distribution

Example continued

i We require P(X = 3), which is given by

P(X =3) = (23()) (0.1)3(0.9)" ~ 0.190.

i We now require P(X > 3), i.e.

The Binomial
Distribution

4
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Probability and Statistics: Probability Distributions

The Binomial Distribution: Notes of y and o2

Recall that for the binomial distribution

flz) = (n>pzq1_z

x

and so for the mean p it is possible to show that (proof
omitted)

The Binomial
Distribution
n
p=> xf(z)
=0
- n
_ Xr NnN—=x _
T
=0

Also for the variance 02, this can be shown to be

0% = npg = np(1 — p).
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Probability and Statistics: Probability Distributions

The Poisson Distribution: Introduction

Consider the following
i The number of accidents per year in a given factory
ii The number of cars crossing a bridge per hour
iii The number of faults in a length of cable

The Poisson
Distribution
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Probability and Statistics: Probability Distributions

The Poisson Distribution: Introduction

Consider the following
i The number of accidents per year in a given factory
ii The number of cars crossing a bridge per hour
iii The number of faults in a length of cable

The above require a distribution which involves an average rate
s Bt w. If a random variables X is distributed such that the average
Distribution number of events in a specified interval is i, then the
probability of x such events in that interval is

o
P(X =2)= -V

x!
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Probability and Statistics: Probability Distributions

The Poisson Distribution: Introduction

Consider the following
i The number of accidents per year in a given factory
ii The number of cars crossing a bridge per hour
iii The number of faults in a length of cable

The above require a distribution which involves an average rate
s Bt w. If a random variables X is distributed such that the average
Distribution number of events in a specified interval is i, then the
probability of x such events in that interval is

e Hu®

P(X =2) = o
This is known as the Poisson distribution. Note that a
random variable X that is Poisson distributed takes on values
0,1,2,..., to oc.
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Probability and Statistics: Probability Distributions

The Poisson Distribution: Relationship with the Binomial Distribution

One of the most important uses of the Poisson distribution is
to approximate the Binomial distribution as Poisson is easier to
evaluate.

The Poisson
Distribution
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Probability and Statistics: Probability Distributions

The Poisson Distribution: Relationship with the Binomial Distribution

One of the most important uses of the Poisson distribution is
to approximate the Binomial distribution as Poisson is easier to
evaluate.

It may be shown (proof omitted) that the Poisson distribution
is a limiting case of the binomial distribution. Recall that for
the binomial distribution

The Poisson

Distribution n _
f(ﬂf)Z( )pzq" v
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Probability and Statistics: Probability Distributions

The Poisson Distribution: Relationship with the Binomial Distribution

One of the most important uses of the Poisson distribution is
to approximate the Binomial distribution as Poisson is easier to
evaluate.

It may be shown (proof omitted) that the Poisson distribution
is a limiting case of the binomial distribution. Recall that for
the binomial distribution

The Poisson

Distribution n _
f(z) :( )pzq" v

x

We let p — 0 and n — oo with p = np fixed and finite.
Then
f(z) — Pois(u).

Note that the Poisson distribution has mean p and variance p
(Try to show this).
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Probability and Statistics: Probability Distributions

The Poisson Distribution: Example

Example

On average, 240 cars per hour pass through a check point, and
a queue forms if more than three cars pass through in a given
minute.

The Poisson
Distribution

What is the probability that a queue forms in a randomly
selected minute?
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Probability and Statistics: Probability Distributions

The Poisson Distribution: Example

The unit we work with is the minute .

240
Average number of cars per minute = 0 4=yp

The Poisson
Distribution

v
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Probability and Statistics: Probability Distributions

The Poisson Distribution: Example

The unit we work with is the minute .

240

Average number of cars per minute = 0 4=y
Let the random variable X be defined as
The Poisson . . .
Distribution X = Number of cars forming in a randomly selected minute

then X ~ Pois(4), and we require

P(X > 3)
—1-[P(X=0)+P(X =1)+P(X =2) + P(X = 3)].

v
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Probability and Statistics: Probability Distributions

The Poisson Distribution: Example continued

Solution Continued

Z

P(X =2) = €45

X z!
0 0.0183
1 0.0732
: 2 0.1464
T!1e _Pms:son
Distribution 3 01952
Total 0.4331
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Probability and Statistics: Probability Distributions

The Poisson Distribution: Example continued

Solution Continued

Z

P(X =2) = €45

X z!
0 0.0183
1 0.0732
: 2 0.1464
T_he _Pmsgon
Distribution 3 01952
Total 0.4331

Hence
P(X >3) =1-0.4331 = 0.5669.
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Probability and Statistics: Probability Distributions

The Poisson Distribution: Another Example

Example

The number of goals in 500 league games were distributed as
follows.

Goals/Match [0 1 2 3 4 5 6 7 8
Frequency |52 121 129 00 42 45 18 1 2

The Poisson
Distribution

Compare this to a Poisson distribution.
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Probability and Statistics: Probability Distributions

The Poisson Distribution: Another Example

Example

The number of goals in 500 league games were distributed as
follows.

Goals/Match [0 1 2 3 4 5 6 7 8
Frequency |52 121 129 00 42 45 18 1 2

The Poisson
Distribution

Compare this to a Poisson distribution.

Solution

| A\

1173
Average Number of goals per match = p = =00 - 2.346
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Probability and Statistics: Probability Distributions

The Poisson Distribution: Another Example (continued)

Example continued

We now calculate the Poisson frequencies using a random
variable X such that X ~ Pois(2.346).

Number of games with y goals = 500 x P(X = y)

The Poisson
Distribution

v
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Probability and Statistics: Probability Distributions

The Poisson Distribution: Another Example (continued)

Example continued

We now calculate the Poisson frequencies using a random
variable X such that X ~ Pois(2.346).

Number of games with y goals = 500 x P(X = y)
Number of games with 0 goals = 500 x P(X = 0)

The Poisson —2.346 0
Distribution — 500 x € 5'2.346)

~ 48
Number of games with 1 goal = 500 x P(X = 1)

6_2'346(2.346)1
1!

~ 112 etc...

v

= 500 x
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Probability and Statistics: Probability Distributions

The Poisson Distribution: Another Example (continued)

Solution (Continued)

Goals/Match [0 1 2 3 4 5 6 7 8

The Poisson Freq uency | 48 111 132 103 60 28 11 4 1

Distribution

which is a good fit to the original data.
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Probability and Statistics: Probability Distributions

The Poisson Distribution: Using the Poisson to Estimate the Binomial
Distribution

A factory produces screws. The probability that a randomly
selected screw is defective is given by p = 0.01.

The Poisson
Distribution

In a random sample of 100 screws, what is the probability that
the same will contain more than 2 defective screws?
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Probability and Statistics: Probability Distributions

The Poisson Distribution: Using the Poisson to Estimate the Binomial
Distribution

Solution

The complimentary event A€, i.e. the probability that there are
no more than two defective screws, then

| P(A°) = (180) (0.01)°(0.99)%° + (1(1)0) (0.01)1(0.99)%

Distribution 100
+ ( 5 )(0.01)2(0.99)98

which is quite a laborious calculation, though it is possible to
show that

P(A) =1 — P(A°) ~ 0.0794.
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Probability and Statistics: Probability Distributions

The Poisson Distribution: Using the Poisson to Estimate the Binomial

Distribution

Example (continued)

An alternative is to use the Poisson approximation: As n is
large and p is small, we have

p=np=1,

i.e. on average every 1 in 100 is defective. Then

The Poisson
Distribution

\V)

19 1t 12 5
P(A%) = e” <0,+ + ):e—l x = = 0.9197

and therefore

P(A) = 1 — P(A°) ~ 0.0803

which is ‘close’ to the binomial distribution result.

v
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Probability and Statistics: Regression

Motivation

Consider pairs of variables (1, 1), (z2.y2, .. ., (Tn,yn)) where
x is known and/or controlled and y is a random variables
depending on .

Statistical

Regression
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Probability and Statistics: Regression

Motivation

Consider pairs of variables (1, 1), (z2.y2, .. ., (Tn,yn)) where
x is known and/or controlled and y is a random variables
depending on .

Here we consider straight line
regression

Statistical

Regression

y = ko + k1z,

i.e. the task is to fit a straight line to the (x;,y;) data.

428 /435



Probability and Statistics: Regression

Least Squares Regression

We use Least Squares: Straight line is such that the sum of
the squares of the distances of the points (z;.y;) from the
straight line is minimised.

Assume: The values x1, 29, ..., x, are not all equal, then this
implies a unique straight line.

Derivation of the Least Squares Formula

Statistical

Regression

The point (z;,y;) has vertical (y direction) distance from the
line y = ko + k12 equal to

ly; — (ko + kizj)|
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Probability and Statistics: Regression

Least Squares Regression: Formula Derivation

Derivation (Continued)

This implies the sum of the squares of the distances ¢ is given
by

n
q=Y_ (y; — ko — k1))’

Jj=1
platistical and a minimum value of ¢ must satisfy
egression
9q 9q
— =0 and — =0.
ko 0k

430 /435



Probability and Statistics: Regression

Least Squares Regression: Formula Derivation

Derivation (Continued)

The first condition gives

—QZ(yj —ko —kl.’L‘j) =0
Jj=1

n

or Z(yj —ko—klx]‘) =0

Statistical Jj=1
Regression

or ny — nko— kinz = 0.

since

J=1

1 — 1 &
:E:EZ:@ and g:EZyj.
j=1

(25)

4
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Probability and Statistics: Regression

Least Squares Regression: Formula Derivation

Derivation (Continued)

The second condition gives
n
— 2l‘j Z (yj — k‘() - klil?j) =0
j=1
n
atistica 1 —k —k 2 :0
e or D (w9 — oz — huaf)
j=1
n n
or Z xjy; — nkoZ — ki Z x? =0. (26)
j=1 J=1
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Probability and Statistics: Regression

Least Squares Regression: Formula Derivation

Equation (25) gives

ko =y — ki,
and substituting to (26) yields

n n
ijyj —n(y—kz)x — klzm? =0,
j=1 j=1

Statistical or

Regression

b 2= Yy i (@5 — 2)(y; — 9)
1= _ = = ’
Z?:1 x? — nz? Z?:l(%’ — )2

where the very last step is left as an exercise.
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Probability and Statistics: Regression

Least Squares Regression: Example

Calculate the last squares regression from the following data

Ty Yi | = 5 T5Y;
4x10% 23 1.6 x 10" 9.2 x 103
6 x 103 4.1 3.6 x 107 2.46 x 10*
8 x 103 5.7 6.4 x 10" 4.56 x 10*

104 6.9 108 6.9 x 10*

Statistical
Regression

which gives
T ="T7000, ¢y =4.75,

n n
v3 =216 x 105, Y ajy; = 1.484 x 10°.
j=1 j=1
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Probability and Statistics: Regression

Least Squares Regression: Example

Yo wjy; — NIy 15400
k= =2 = = 0.00077
! S as —nz? 2% 107

and
ko =1y — kiz = —0.64.

Statistical

Regression Therefore the regression line is

y = 0.00077x — 0.64.
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