
Engineering
Mathematics
I: Course
Outline

This course will cover the following topics

• Differentiation

• Hyperbolic Functions

• Partial Differentiation

• Integration

• First Order Ordinary Differential Equations

• Vectors

• Numerical Methods

• Probability and Statistics
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Differentiation: Outline of Topics

1 Basic Differentiation

2 The Chain Rule

3 Applications of Differentiation
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Differentiation
Table of Basic Derivatives

f(x) df
dx

xn (n 6= 0) nxn−1

1 0

ln (x) x−1

ex ex

sin (x) cos (x)

cos (x) − sin (x)

sinh (x) cosh (x)

cosh (x) sinh (x)

Table: Table of Basic Derivatives
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Differentiation
Table of Rules for Differentiation

Rule f(x) df
dx Notes

1 u + v du
dx + dv

dx Addition Rule

2 Cu C du
dx (C =constant)

3 uv v du
dx + udv

dx Product Rule

4 u/v
v du

dx
−u dv

dx
v2 Quotient Rule

5 f(u(x)) f ′(u(x))du
dx Chain Rule

6 dx
dy

1
dy
dx

For Inverse Functions

Table: Table of Rules for Differentiation
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Differentiation: Basics
Some Basic Examples

Let’s try and calculate some basic derivatives

Example

d
dx

(
x3
)

= 3x2.

Example

d
dx

(√
x
)

=
d
dx

(
x

1
2

)
=

1
2
x−

1
2 =

1
2
√

x
.

Example

d
dx

(
1
x2

)
=

d
dx

(
x−2

)
= −2x−3 = − 2

x3
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Differentiation: Basics
Some Exercises (Try for Yourself)

Try to show the following results

i
d
dx

(
1
x

)
= − 1

x2

ii
d
dx

(
1
3
√

x

)
= − 1

3 3
√

x4

iii
d
dx

(
x

3
2

)
=

3
2
√

x

iv
d
dx

(2) = 0
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Differentiation: Applying the Rules
Applying the Addition and Scalar Multiplication Rules

Rules 1 and 2 deal with addition of functions and multiplication
by a constant, as in the following example:

Example

Compute the following derivative

d
dx

(2ex − 3 cosx)

Applying the addition formula yields

= 2
d
dx

(ex)− 3
d
dx

(cos x)

= 2ex − 3(− sin x)
= 2ex + 3 sin x
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Differentiation: Applying the Rules
Applying the Addition and Scalar Multiplication Rules

Example

Compute the following derivative

d
dx

(
x

1
2 − x−

1
2

)

=
1
2
x−

1
2 +

1
2
x−

3
2

=
1

2
√

x

(
1 +

1
x

)
.

8 / 435



Basic
Differentiation

The Chain
Rule

Applications
of
Differentiation

Differentiation: Applying the Rules
Applying the Addition and Scalar Multiplication Rules

Example
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Differentiation: Applying the Rules
Example using the Product Rule

Rules 3 and 4 deal with products of functions and quotients.

Example

Compute the following derivative

d
dx

(
x3 sin x

)

This is a product of two functions, so use Product Rule
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Differentiation: Applying the Rules
Example using the Product Rule

Rules 3 and 4 deal with products of functions and quotients.

Example

Compute the following derivative

d
dx

(
x3 sin x

)
This is a product of two functions, so use Product Rule

Reminder: The product rule is given by

d
dx

(uv) = v
du

dx
+ u

dv

dx
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Differentiation: Applying the Rules
Example using the Product Rule

Rules 3 and 4 deal with products of functions and quotients.

Example

Compute the following derivative

d
dx

(
x3 sin x

)
This is a product of two functions, so use Product Rule

Therefore applying the product rule yields

d
dx

(
x3 sin x

)
=

d
dx

(
x3
)
sin x + x3 d

dx
(sin x)

i.e.
d
dx

(
x3 sin x

)
= 3x2 sin x + x3 cos x.
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Differentiation: Applying the Rules
Example using the Product Rule

Example

Compute the following derivative

d
dx

(
x2ex

)
.

Again the product rule is used

d
dx

(
x2ex

)
=

d
dx

(
x2
)
ex + x2 d

dx
(ex)

i.e
d
dx

(
x2ex

)
= 2xex + x2ex.
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Differentiation: Applying the Rules
Example: Differentiate a Product of Three Functions

We can use the product rule to compute the derivative of a
function that is a product of many functions

Example

Compute the following derivative

d
dx

(
x2ex sin x

)

=
d
dx

(
x2
)
ex sin x

+ x2 d
dx

(ex) sinx

+ x2ex d
dx

(sin x)

= (2xex + x2ex) sinx + x2ex cos x.
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We can use the product rule to compute the derivative of a
function that is a product of many functions

Example

Compute the following derivative

d
dx

(
x2ex sin x

)
=

d
dx

(
x2
)
ex sin x

+ x2 d
dx

(ex) sinx
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Differentiation: Applying the Rules
Example using the Quotient Rule

This example next shows a standard use of the quotient rule.

Example

Compute the following derivative

d
dx

(
x− 1
x2 + 1

)

Applying the quotient rule gives

d
dx

(
x− 1
x2 + 1

)
=

(
x2 + 1

)
d
dx (x− 1)− (x− 1) d

dx

(
x2 + 1

)
(x2 + 1)2

=

(
x2 + 1

)
× 1− (x− 1)× 2x

(x2 + 1)2

=
−x2 + 2x + 1

(x2 + 1)2
.
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Differentiation: Applying the Rules
Finding the derivative of tanh x using the quotient rule

Example (Differentiate tanh x using the quotient rule)

d
dx

(tanh x)

=
d
dx

(
sinh x

cosh x

)
=

cosh x d
dx (sinh x)− sinh x d

dx (cosh x)
cosh2 x

=
cosh× cosh x− sinh x× sinh x

cosh2 x

=
cosh2 x− sinh2 x

cosh2 x
,

and now using the hyperbolic identity

cosh2 x− sinh2 x ≡ 1,
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Differentiation: Applying the Rules
Finding the derivative of tanh x using the quotient rule (continued)

Example (Differentiating tanh x continued)

this leads to

d
dx

(tanh x) =
1

cosh2 x

and since

sech x ≡ 1
cosh x

=⇒ sech2 x ≡ 1
cosh2 x

,

this leads to the result

d
dx

(tanh x) = sech2 x.
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Differentiation: Applying the Rules
Finding the derivative of tan x using the quotient rule

The idea here is very similar idea to previous example

Example (Differentiate tan x using the quotient rule)

d
dx

(tan x) =
d
dx

(
sin x

cos x

)
=

cos x d
dx (sin x)− sin x d

dx (cos x)
cos2 x

=
cosh× cos x− sin x× (− sin x)

cos2 x

=
cos2 x + sin2 x

cos2 x
,

and now using the trigonometric identity

cos2 x + sin2 x ≡ 1
15 / 435
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Differentiation: Applying the Rules
Finding the derivative of tan x using the quotient rule (continued)

Example (Differentiate tan x using the quotient rule)

this leads to
d
dx

(tan x) =
1

cos2 x
,

and since

sec x ≡ 1
cos x

=⇒ sec2 x ≡ 1
cos2 x

,

this leads to the result

d
dx

(tan x) = sec2 x.
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Differentiation: Applying the Rules
Using the Chain Rule

Example (Applying the Chain Rule)

Compute the following derivative

d
dx

(sin 2x) .

Reminder: The chin rule says that

d
dx

(f(u(x))) = f ′(u(x))
du

dx
.

So we let

u(x) = 2x,
du

dx
= 2,

f(u) = sin u
df

du
= cosu
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Differentiation: Applying the Rules
Using the Chain Rule (example continued)

Example (Using the Chain Rule)

then applying the chain rule gives

d
dx

(sin 2x) =
d
du

(f(u))
du

dx
= 2 cos u,

and rewriting back in terms of the original variable x gives

d
dx

(sin 2x) = 2 cos 2x.
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Differentiation: Applying the Rules
Another Example Using the Chain Rule

Example (Applying the Chain Rule)

Compute the following derivative

d
dx

(
ln
(
x2 − 1

))
Let

u(x) = x2 − 1, u′(x) = 2x

f(u) = ln u f ′(u) =
1
u

then applying the chain rule gives

d
dx

(
ln
(
x2 − 1

))
=

2x

u
=

2x

x2 − 1
.
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Differentiation: Applying the Rules
Another Example Using the Chain Rule

Example

Compute the following derivative

d
dx

(cos (3x− 7))

Let

u(x) = 3x− 7, u′(x) = 3
f(u) = cosu f ′(u) = − sin u

then applying the chain rule gives

d
dx

(cos (3x− 7)) = −3 sinu = −3 sin (3x− 7).
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Differentiation: Applying the Rules
Another Example Using the Chain Rule

Example

Compute the following derivative

d
dx

(
ex2
)

Let

u(x) = x2, u′(x) = 2x

f(u) = eu f ′(u) = eu

then applying the chain rule yields

d
dx

(
ex2
)

= 2xeu = 2xex2
.
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Differentiation: Applying the Rules
Another Example Using the Chain Rule

Example

Compute the following derivative

d
dx

((
x2 − 3

)7)
Let

u(x) = x2 − 3, u′(x) = 2x
f(u) = u7, f ′(u) = 7u6

then applying the chain rule yields

d
dx

((
x2 − 3

)7) = 2x× 7u6 = 2x(x2 − 3)6
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Differentiation: Applying the Rules
Example with multiple usage of the chain rule

Example

Compute the following derivative

d
dx

(
sin
(
ln
(
x2ex

)))

First apply chain rule with f(u) = sin u, u = ln
(
x2ex

)
= cos

(
ln
(
x2ex

))
× d

dx

(
ln
(
x2ex

))
Then apply chain rule with f(u) = lnu, u = x2ex

= cos
(
ln
(
x2ex

)) 1
x2ex

d
dx

(
x2ex

)
Then apply product rule with u = x2, v = ex

= cos
(
ln
(
x2ex

)) 1
x2ex

[
x2ex + 2xex

]
.
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= cos
(
ln
(
x2ex

)) 1
x2ex

[
x2ex + 2xex

]
.
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Another Example with multiple usage of the chain rule

Example

Compute the Derivative

d
dx

(
sin4

(
3ex2 − 1

))

First use the chain rule with f(u) = u4, u = sin
(
3ex2 − 1

)
4 sin3

(
3ex2 − 1

) d
dx

(
sin
(
3ex2 − 1

))
Then use the chain rule with f(u) = sinu, u =

(
3ex2 − 1

)
4 sin3

(
3ex2 − 1

)
cos
(
3ex2 − 1

) d
dx

(
3ex2 − 1

)
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Another Example with multiple usage of the chain rule (continued)

Example (...continued)

Then use the chain rule with f(u) = 3eu − 1, u = x2

4 sin3
(
3ex2 − 1

)
cos
(
3ex2 − 1

)(
3ex2 × 2x

)
.

Tidying up a little yields the final result

d
dx

(
sin4

(
3ex2 − 1

))
= 24xex2

sin3
(
3ex2 − 1

)
cos
(
3ex2 − 1

)
.
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Extra Example (2009 Exam Question)

Example

Compute the following derivative

dy

dx
for y = sin

(
e−x

x

)
.

This problem requires the chain rule with

f(u) = sin u,
df

du
= cos u,

u =
e−x

x
,

du

dx
= −e−x

x
− e−x

x2
.
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Example

Compute the following derivative

dy

dx
for y = sin

(
e−x

x

)
.

This problem requires the chain rule with

f(u) = sin u,
df

du
= cos u,

u =
e−x

x
,

du

dx
= −e−x

x
− e−x

x2
.

Hence
dy

dx
= cos

(
e−x

x

)(
−e−x

x
− e−x

x2

)
.
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Proof of Rule 6

Theorem

If y = f(x) then
dx

dy
=

1
dy
dx

.

Proof.

Let
y = f(x), then x = f−1(y),

where f−1 is the inverse function of f

Please note that f−1 6= 1/f !

Now differentiate this using the chain rule
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Proof of Rule 6 (continued..)

Proof (continued).

Differentiating w.r.t x using the chain rule

1 =
d
dy

(
f−1

)
× dy

dx
=

dx

dy

dy

dx
(since x ≡ f−1)

which yields the result

dx

dy
=

1
dy
dx

.
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Application of Rule 6

Rule 6 tells us how to deal with inverse functions:

Example

Find
dy

dx
when y = sin−1 x, −π

2
≤ y ≤ π

2
.

x = sin y,
dx

dy
= cos y,

∴
dy

dx
=

1
dx
dy

=
1

cos y

=
1

±
√

1− sin2 y
=

1
±
√

1− x2
.
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Application of Rule 6 (continued...)

Example

So we have
y = sin−1 x, −π

2
≤ y ≤ π

2
,

and
dx

dy
=

1
cos y

, (1)

which lead to
dy

dx
=

1
±
√

1− x2
.

If −π
2 ≤ y ≤ π

2 , then cos y ≥ 0 and so dy
dx ≥ 0 by equation (1).

Hence taking the positive square root gives

dy

dx
=

1√
1− x2

.
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Another Application of Rule 6

Example

Find
dy

dx
when y = cosh−1 x

x = cosh y,
dx

dy
= sinh y,

∴
dy

dx
=

1
dx
dy

=
1

sinh y

=
1

±
√

cosh2 y − 1
=

1
±
√

x2 − 1
.

31 / 435



Basic
Differentiation

The Chain
Rule

Applications
of
Differentiation

Differentiation: Applying the Rules
Another Application of Rule 6

Example

Find
dy

dx
when y = cosh−1 x

x = cosh y,
dx

dy
= sinh y,

∴
dy

dx
=

1
dx
dy

=
1

sinh y

=
1

±
√

cosh2 y − 1
=

1
±
√

x2 − 1
.

31 / 435



Basic
Differentiation

The Chain
Rule

Applications
of
Differentiation

Differentiation: Applying the Rules
Another Application of Rule 6

Example

Find
dy

dx
when y = cosh−1 x

x = cosh y,
dx

dy
= sinh y,

∴
dy

dx
=

1
dx
dy

=
1

sinh y

=
1

±
√

cosh2 y − 1
=

1
±
√

x2 − 1
.

31 / 435



Basic
Differentiation

The Chain
Rule

Applications
of
Differentiation

Differentiation: Applying the Rules
Another Application of Rule 6 (continued..)

We Can Check This Result by Differentiating

We know that

y = cosh−1 x = ± log
(
x +

√
x2 − 1

)
.

Thus by applying the chain rule

dy

dx
=

±1
x +
√

x2 − 1

[
1 +

1
2
(
x2 − 1

)− 1
2 2x

]
=

±1
x +
√

x2 − 1

[
1 +

x√
x2 − 1

]
=

±1√
x2 − 1

.
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Another Application of Rule 6

Example (Differentiating tan−1 x)

Find
d
dx

(
tan−1 x

)
.

First let y = tan−1 x and so x = tan y

.

Then

dx

dy
=

d
dy

(
sin y

cos y

)
=

cos2 y + sin2 y

cos2 y
.

∴
dy

dx
=

1
sec2 y

=
1

1 + tan2 y
=

1
1 + x2

.
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Logarithmic Differentiation

Sometimes it’s useful to take logs before differentiating.

Example

Find
d
dx

(xx) .

First let y = xx, then ln y = lnxx = x ln x.

d
dx

(ln y) =
d
dx

(x ln x)

1
y

dy

dx
= ln x +

x

x

∴
dy

dx
= y (1 + ln x)

dy

dx
= xx (1 + ln x).
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Logarithmic Differentiation, Another Example

Example

Differentiate the function y = 10x with respect to x.

y = 10x, ∴ ln y = x ln 10.

and so in differentiating w.r.t x

1
y

dy

dx
= ln 10,

dy

dx
= 10x ln 10.
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More Examples of Logarithmic Differentiation

Example

y =
x2 cos x

sin 2x

(
=

x2

2 sinx

)
.

Take logs and differentiate with respect to x to give

ln y = ln x2 + ln cos x− ln sin 2x

1
y

dy

dx
=

2x

x2
− sin x

cos x
− 2

cos 2x

sin 2x
.

∴
dy

dx
= y

(
2
x
− tan x− 2 cot 2x

)
dy

dx
=

x2 cos x

sin 2x

(
2
x
− tan x− 2 cot 2x

)
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Differentiate the Equation of a circle

Example

Suppose that x2 + y2 = 1

• This is the equation of a circle, centre O radius 1.

• y is an implicit function of x.

• To find dy
dx we take d

dx of all terms.

d
dx

(
x2
)

+
d
dx

(
y2
)

=
d
dx

(1) ,

i.e

2x + 2y
dy

dx
= 0 ∴

dy

dx
= −x

y
.
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Checking the previous result

Checking this this result

y2 = 1− x2 ∴ y = ±
√

1− x2

Differentiating the positive square root yields

dy

dx
= −2x× 1

2
(
1− x2

)− 1
2

=
−x√
1− x2

= −x

y
.

Note that if we take the negative square root, i.e.
y = −

√
1− x2, then we get the same result.
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Another Example

Example

If the equation of a curve is given by

x2 + 3xy + y2 = 7,

find dy
dx in terms of x and y.

We proceed by differentiating each term w.r.t. x

2x + 3y + 3x
dy

dx
+ 2y

dy

dx
= 0←− (Common source of error)

i.e
dy

dx
= −2x + 3y

3x + 2y
.

39 / 435



Basic
Differentiation

The Chain
Rule

Applications
of
Differentiation

Implicit Differentiation
Another Example

Example

If the equation of a curve is given by

x2 + 3xy + y2 = 7,

find dy
dx in terms of x and y.

We proceed by differentiating each term w.r.t. x

2x + 3y + 3x
dy

dx
+ 2y

dy

dx
= 0←− (Common source of error)

i.e
dy

dx
= −2x + 3y

3x + 2y
.

39 / 435



Basic
Differentiation

The Chain
Rule

Applications
of
Differentiation
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A Simple Example of Computing Higher Derivatives

Example

Having found dy
dx we can differentiate again to get d2y

dx2 etc.

y = x6

dy

dx
= 6x5

d2y

dx2
= 6× 5x4 = 30x4

d3y

dx3
= 30× 4x3 = 120x3

d4y

dx4
= 360x2

d5y

dx5
= 720x
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Differentiation: Computing Higher Derivatives
A Simple Example of Computing Higher Derivatives (continued)

Example

d6y

dx6
= 720

d7y

dx7
= 0

d8y

dx8
= 0.

As a matter of convenience sometimes the following notation is
used for higher derivatives

dny

dxn
= y(n)

and so
d2y

dx2
= y(2),

d3y

dx3
= y(3), etc

41 / 435



Basic
Differentiation

The Chain
Rule

Applications
of
Differentiation

Differentiation: Computing Higher Derivatives
A Simple Example of Computing Higher Derivatives (continued)

Example

d6y

dx6
= 720

d7y

dx7
= 0

d8y

dx8
= 0.

As a matter of convenience sometimes the following notation is
used for higher derivatives

dny

dxn
= y(n)

and so
d2y

dx2
= y(2),

d3y

dx3
= y(3), etc

41 / 435



Basic
Differentiation

The Chain
Rule

Applications
of
Differentiation

Differentiation: Computing Higher Derivatives
Another Example of Computing Higher Derivatives

Example

y = sin 2x, find
dy

dx
,

d2y

dx2
, y(3).

dy

dx
= 2 cos 2x,

d2y

dx2
= −4 sin 2x

y(3) = −8 cos 2x

y(4) = 16 sin 2x
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Another Example of Computing Higher Derivatives (continued..)

Example

In fact we can write a general formula as

y(n) =


2 cos 2x n = 4p + 1
−2n sin 2x n = 4p + 2
−2n cos 2x n = 4p + 3
2n sin 2x n = 4p

For p = 0, 1, 2, . . .
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Another Example of Computing Higher Derivatives

Example

If y = e2x, what is dny
dxn ?

dy

dx
= y(1) = 2e2x, y(2) = 4e2x, y(3) = 8e2x

∴ y(n) = 2ne2x.
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Differentiation: Computing Higher Derivatives
Computing the nth derivative of a product

Suppose that we have a function defined as a product, i.e.
given by

y = uv, where u = u(x), v = v(x).

In general if y = uv then applying the product rule gives

y(1) = u(1)v + uv(1)

y(2) = u(2)v + u(1)v(1) + u(1)v(1) + uv(2)

y(3) = u(3)v + 3u(2)v(1) + 2u(2)v(1) + 2u(1)v(2)

+ u(1)v(2) + uv(3)

= u(3) + 3u(2)v(1) + 3u(1)v(2) + uv(3).

Notice that the binomial coefficients are appearing.
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Suppose that we have a function defined as a product, i.e.
given by

y = uv, where u = u(x), v = v(x).

In general if y = uv then applying the product rule gives
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Computing the nth derivative of a product

In fact...

y(n) = u(n)v +
(

n

1

)
u(n−1)v(1) +

(
n

2

)
u(n−2)v(2) + · · ·

+
(

n

n− 1

)
u(1)v(n−1) + uv(n)

=
n∑

k=0

(
n

k

)
u(n−k)v(k) (2)

where (
n

k

)
=

n!
(n− k)!k!

.

Equation 2 is known as Leibnitz’s formula for differentiating a
product n times.
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Example Demonstrating an Application of Leibnitz’s rule

Example

If y = xex, what is
dny

dxn
?

Using Leibnitz’s formula with v = x, u = ex gives

y(n) = x
dn

dxn
(ex) +

(
n

1

)
d
dx

(x)
dn−1

dxn−1
(ex)

+
»»»»»»»»»»»»:0(

n

2

)
d2

dx2
(x)

dn−2

dxn−2
(ex) + 0

= xex + n.1.ex

= ex(x + n).
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Second Example Demonstrating Leibnitz’s rule

Example

Let y = x2 sin x. Find
d17y

dx17
.

When applying Leibnitz’s rule, for the function v you should
choose v such that when differentiated a relatively few number
of times it becomes zero (if this is possible). Hence we choose
u = sinx, v = x2.

y(17) = x2 d17

dx17
(sin x) +

(
17
1

)
2x

d16

dx16
(sin x)

+
(

17
2

)
2

d15

dx15
(sin x) + 0.

48 / 435



Basic
Differentiation

The Chain
Rule

Applications
of
Differentiation

Differentiation: Computing Higher Derivatives
Second Example Demonstrating Leibnitz’s rule

Example

Let y = x2 sin x. Find
d17y

dx17
.

When applying Leibnitz’s rule, for the function v you should
choose v such that when differentiated a relatively few number
of times it becomes zero (if this is possible). Hence we choose
u = sinx, v = x2.

y(17) = x2 d17

dx17
(sin x) +

(
17
1

)
2x

d16

dx16
(sin x)

+
(

17
2

)
2

d15

dx15
(sin x) + 0.

48 / 435



Basic
Differentiation

The Chain
Rule

Applications
of
Differentiation

Differentiation: Computing Higher Derivatives
Second Example Demonstrating Leibnitz’s rule (..continued)

Example (..continued)

Now

d16

dx16
(sin x) = sinx, ∴

d17

dx17
(cos x) ,

d15

dx15
(− cos x) .

∴ y(17) = x2 cos x + 17.2x sin x +
17.16

2
.2. (− cos x)

= x2 cos x + 34x sin x− 272 cosx.
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Description of Parametric Equations

In many applications a function is referenced by a a parameter,
i.e.

x = cos 2t, y = sin t,

where the parameter t ≡ time (for example).

• For a given value of t, both x and y may be found.

• This implies that we can generate a curve y = f(x).
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Example of Parametric Differentiation

Example

If a curve is defined parametrically as

x = cos 2t, y = sin t, then find
dy

dx
and

d2y

dx2
.

dy

dt
= −2 sin 2t and

dx

dy
= cos t

Thus
dy(t)
dx

=
dy

dt
.
dt

dx︸ ︷︷ ︸
Chain Rule

=
dy
dt
dx
dt

dy

dx
=
−2 sin 2t

cos t
= −4 sin t»»»cos t

»»»cos t
= −4 sin t
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Differentiation: Parametric Differentiation
Example of Parametric Differentiation (..continued)

Example

What about
d2y

dx2

(
6= d2y

dt2

/d2x

dt2

)

By definition

d2y

dx2
=

d
dx

(
dy

dx

)
=

d
dx

(−4 sin t)

=
d
dt

(−4 sin t)
dt

dx
(Chain Rule)

= −4
cos t
dx
dt

= −4 cos t

cos t
= −4.
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Differentiation: Parametric Differentiation
Second Example of Parametric Differentiation

Example

y = 3 sin θ − sin3 θ, x = cos3 θ, Find
dy

dx
,

d2y

dx2
.

In this example θ is the parameter.

dy

dx
=

dy

dθ

/dx

dθ
= ¢3 cos θ − ¢3 sin2 θ cos θ

−¢3 cos2 θ sin θ
,

=
cos θ

(
1− sin2 θ

)
− cos2 θ sin θ

=
cos θ»»»»(

cos2 θ
)

−»»»cos2 θ sin θ

= −cos θ

sin θ
= −cot θ
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Second Example of Parametric Differentiation (..continued)

Example

d2y

dx2
=

d
dx

(− cot θ) =
d
dθ

(− cot θ)
dθ

dx

= −
(
− 1

sin2 θ

)/(
−3 cos2 θ sin θ

)
= − 1

3 cos2 θ sin3 θ
.
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Differentiation of Cotangent

Note that in the last example we used the result that

d
dθ

(cot θ) = − 1
sin2 θ

= − cosec2 θ,

which is easily proved using the quotient rule.

Proof.

d
dθ

(cot θ) =
d
dθ

(
cos θ

sin θ

)
=
− sin2 θ − cos2 θ

sin2 θ

= − 1
sin2 θ

= − cosec2 θ.
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Relating the Derivative to the Gradient/Slope of a Tangent to a Curve

Meaning of dy
dx?

• Rate of increase of y w.r.t x

• or the slope of the tangent to the curve y = f(x) at x

x

y

P

Q

x x + δx

y = f(x)

f(x)

f(x + δx)

δx

f(x + δx)− f(x)

Chord
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Defining the Derivative from First Principles

Slope of the chord PQ

=
Change in y

Change in x
=

f(x + δx)− f(x)
δx

,

and as δx→ 0, chord → tangent.

Therefore: Slope of the tangent at x

=
dy

dx
= lim

δx→0

(
f(x + δx)− f(x)

δx

)
.
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Differentiating from first principles example

Theorem

Let y = f(x) = x2. Then dy
dx = 2x

Proof.

dy

dx
= lim

δx→0

(
(x + δx)2 − x2

δx

)
= lim

δx→0

(
¡¡x

2 + 2xδx + (δx)2 −¡¡x
2

δx

)
= lim

δx→0
(2x + δx)

= 2x.

58 / 435



Basic
Differentiation

The Chain
Rule

Applications
of
Differentiation

Applications of Differentiation
Differentiating from first principles example

Theorem

Let y = f(x) = x2. Then dy
dx = 2x

Proof.

dy

dx
= lim

δx→0

(
(x + δx)2 − x2

δx

)
= lim

δx→0

(
¡¡x

2 + 2xδx + (δx)2 −¡¡x
2

δx

)
= lim

δx→0
(2x + δx)

= 2x.

58 / 435



Basic
Differentiation

The Chain
Rule

Applications
of
Differentiation

Applications of Differentiation
Differentiating from first principles example

Theorem

Let y = f(x) = 1
x . Then dy

dx = − 1
x2

Proof.

dy

dx
= lim

δx→0

(
1

(x+δx) −
1
x

δx

)
= lim

δx→0

( −δx
x(x+δx)

δx

)

= lim
δx→0

(
− 1

x(x + δx)

)
= − 1

x2
.
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The Maxima and Minima of a Function

Consider the following diagram...

y

x

f(b)

f(a)

f ′(a) = dy
dx

∣∣∣
x=a

< 0

f ′(b) = dy
dx

∣∣∣
x=b

> 0

a b

Figure: Plot of y = f(x)
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Defining Stationary/Critical Points

First Observe that

1 If f ′(a) < 0 then f is decreasing near a,

2 If f ′(b) > 0 then f is increasing near b.

Stationary or critical points are points such that dy
dx = 0.

They correspond to either

1 Maxima

2 or Minima

3 or points of inflection.
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The Different Types of Critical Point

y

x

Max Max

Min

Point of Inflection

Figure: Plot of y = f(x). Note that the slope of the tangent is zero
at the critical points
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Describing the Second Derivative Test for Classifying a Critical Point

Second Derivative Tests for Max or Min.

dy
dx

d2y
dx2 Classification

0 > 0 ⇒ Minimum

0 < 0 ⇒ Maximum

0 = 0 ⇒ Inconclusive1

Table: Using second derivatives to classify critical points

1In which case we use a different test!
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How does the Second Derivative Test Work?

How do these tests work? Consider a function with a minimum
point:

y

x

P

Q

R

Figure: Plot of y = f(x) containing a minimum point
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How does the Second Derivative Test Work (..continued)?

• The change in the slope of the tangent going through the
minimum at Q (i.e. P → Q→ R is from negative to
positive.

• i.e The slope of the tangent dy
dx is increasing.

i.e
d
dy

(Slope of tangent) =
d
dx

(
dy

dx

)
> 0,

∴
d2y

dx2
> 0 at Q.
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Applications of Differentiation
What happens when dy

dx
= 0 and d2y

dx2 = 0?

If dy
dx = 0 and d2y

dx2 = 0 then we may still have a maximum,
minimum, or a point of inflection.

Example

y = x4,
dy

dx
= 4x3

∴ Stationary point at x = 0.

d2y

dx2
= 12x2 = 0 at x = 0.
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Applications of Differentiation
What happens when dy

dx
= 0 and d2y

dx2 = 0?

Example (..continued)

But clearly x = 0 is a minimum from the graph of y = x4

• So clearly another test is required

• Another test for max or min is to construct a sign diagram
of dy

dx

• This method always works, even if d2y
dx2 = 0.

67 / 435



Basic
Differentiation

The Chain
Rule

Applications
of
Differentiation

Applications of Differentiation
What happens when dy

dx
= 0 and d2y

dx2 = 0?

Example (..continued)

But clearly x = 0 is a minimum from the graph of y = x4

• So clearly another test is required

• Another test for max or min is to construct a sign diagram
of dy

dx

• This method always works, even if d2y
dx2 = 0.

67 / 435



Basic
Differentiation

The Chain
Rule

Applications
of
Differentiation

Applications of Differentiation
What happens when dy

dx
= 0 and d2y

dx2 = 0?

Example (..continued)

But clearly x = 0 is a minimum from the graph of y = x4

• So clearly another test is required

• Another test for max or min is to construct a sign diagram
of dy

dx

• This method always works, even if d2y
dx2 = 0.

67 / 435



Basic
Differentiation

The Chain
Rule

Applications
of
Differentiation

Applications of Differentiation
Classifying the turning point with a sign diagram

Example (..continued)

In this example recall that y = x4, and dy
dx = 4x3 = 0 when

x = 0.

x = 0

dy
dx = 4x3 < 0 dy

dx = 4x3 > 0

Slope Tangent Negative Slope Tangent Positive

i.e i.e

Hence the point x = 0 must be a minimum.

68 / 435



Basic
Differentiation

The Chain
Rule

Applications
of
Differentiation
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Stationary Points Example

Example

Find all the stationary points and their nature for

y = f(x) = 3x4 − 4x3 + 1.

Calculating the first derivative yields

dy

dx
= 12x3 − 12x2 = 12x2(x− 1).

At the stationary points

dy

dx
= 0, and so 12x2(x− 1) = 0

∴ Stationary points at x = 0, 1.
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Stationary Points Example Continued...

Example (..continued)

Now apply the second derivative test. Calculating the second
derivative yields

d2y

dx2
= 36x2 − 24x.

Calculating the value of the second derivative at the stationary
points gives

At x = 1
d2y

dx2
= 36− 24 > 0 ∴ min.

At x = 0
d2y

dx2
= 0 ∴ Use different test.
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Stationary Points Example Continued...

Example (..continued)

For the point x = 0, we construct a sign diagram for dy
dx ...

x = 0 x = 1

− − +

Therefore
x = 1 is a Minimum
x = 0 is a point of inflection.
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Exam Question (2007)

A curve is given by

y = te−t, x = t2

Find dy
dx and d2y

dx2 .

Where does the curve have a critical (stationary) point? Is it a
maximum, minimum or point of inflection? Justify your answer.

Solution: First calculate the derivatives using the chain rule...

dy

dx
=

e−t − te−t

2t
=

e−t(1− t)
2t

d2y

dx2
= = −e−t

2t
− e−t

2t2
+

e−t

2
.
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2007 Exam Question (..continued)

Note that dy
dx = 0 when t = 1, and is the only possible turning

point. For the second derivative

d2y

dx2

∣∣∣
t=1

=
e−1

4
−

¶
¶
¶e−1

4
+

¶
¶
¶e−1

4
> 0,

and hence the stationary point is a minimum.

To find the cartesian coordinates of the point, substitute t = 1
into the parametric equations to give

y = 1× e−1 = e−1, x = 12 = 1.

Hence the coordinates of the stationary point are (1, e−1).
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• This section describes a recipe for curve sketching

• You can use graphics calculator as a guide, but you should
work through the following recipe in order to accurately
sketch the curve.

• In an exam you will need to show all the following steps of
your working.

• First let y = f(x)
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Recipe for Curve Sketching

1 Where is f defined? (Or put another way, where is it
undefined?). Typically we can sometimes get
vertical asymptotes.

2 Is f odd or even or neither?
3 Find where f(x) = 0 (if possible), i.e. where the curve

cuts the x axis.
4 Find the value of f when x = 0, i.e. y = f(0), where the

curve cuts the y axis.
5 Find all stationary points and their nature (and the value

of f at such points)
6 Analyse the asymptotes

i Horizontal asymptotes: What happens to y as x→ ±∞?
ii If x = a is a vertical asymptote, what happends as x→ a+

and x→ a−.

NB: Often it is possible to deduce the nature of the turning

point without calculation of d2y
dx2 .
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Curve Sketching Example

Example: Sketch the curve y = f(x) = 1
x2−1

.

1: Not defined at x = ±1 (i.e vertical asymptotes as x = ±1.

2: f(−x) = f(x), therefore f(x) is even.

3: f(x) 6= 0 ∀x, therefore f(x) never cuts the x axis.

4: f(0) = −1, i.e. the curve passes through (0,−1)
5: For the derivative

f ′(x) = − 2x

(x2 − 1)2
= 0 when x = 0,

where the nature of the turning point can be determined
from the analysis of the vertical asymptotes, i.e. it will be
shown that x = 0 is a maximum
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Curve sketching example (..continued)

6i: For the horizontal asymptotes,

As x→∞, f(x)→∞
As x→ −∞, f(x)→∞.

6ii: For the vertical asymptotes, note that as x→ 1

As x→ 1+, f(x)→∞,

As x→ 1−, f(x)→ −∞,

and similarly for x→ −1

As x→ −1+, f(x)→ −∞,

As x→ −1−, f(x)→∞.
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Curve sketching example (..continued)

We are now in a position to sketch the curve.

Figure: Sketch of y = f(x) = 1
x2−1
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Graph Sketching: Another Example

Example: Sketch the graph of

y2 =
x(1− x)
4− x2

. (3)

We apply the recipe

1 Note that

y2 =
x(1− x)

(2− x)(2 + x)
,

and therefore there are vertical asymptotes at x = ±2.
Also, for real y, we require y2 > 0, and thus it follows that
y is defined only when

x(1− x)
4− x2

> 0.

The RHS of 3 may change sign at x = 0, 1, and possibly
at the position of the vertical asymptotes.
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Applications of Differentiation
Example 2 continued

Consider the following diagram of the sign of y2

x = 0 x = 1

−

x = −2 x = 2

+ − ++

Therefore the graph of y is undefined for

−2 ≤ x < 0 and 1 < x ≤ 2.
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Applications of Differentiation
Example 2 continued

2 y is neither odd nor even, but observe

y = ±
√

x(1− x)
4− x2

and the ± sign indicated that the graph should be
symmetric about the horizontal x axis.

3 y = 0 when x = 0, 1.

4 x = 0 ∴ y = 0 (see above).
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Example 2 continued

5 dy
dx is stationary when dy2

dx is, since dy2

dx = 2y dy
dx .

dy2

dx
=

(4− x2)(1− 2x)− (x− x2)(−2x)
(4− x2)2

= 0

For this to be zero the numerator must be zero. Therefore
simplifying the numerator leads to

x2 − 8x + 4 = 0 ∴ x = 4± 2
√

3 (≈ 0.54, 7.5).

Rather than calculating the second derivative, we can
deduce the nature of these turning points from the
information regarding the behaviour near the horizontal
asymptotes (Calculation of the second derivative is quite
tedious).
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Example 2 continued

6i To figure out the behaviour of the behaviour as x→ ±∞,
write

y2 =
1− 1

x

1− 4
x2

(4)

and using the geometric series

1
1− z

= 1 + z + z2 + . . . , for |z| < 1,

equation (4) can be approximated as (for large |x|)

y2 ≈
(

1− 1
x

)(
1 +

4
x2

+ . . .

)
≈ 1− 1

x
, (5)

which is valid for |x| → ∞.
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Example 2 continued

Thus

As x→∞, y → 1− (from below)

As x→ −∞, y → 1+ (from above)

In addition, there are there are mirror images (see 81) of this
horizontal asymptote, i.e. at y = −1.

6ii To get the behaviour near the vertical asymptotes it is
simplest(in this case) to find where the curve cuts it’s
horizontal asymptote, i.e. set y2 = 1
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Example 2 continued

∴ 4−¡¡x
2 = x−¡¡x

2, ∴ x = 4,

This implies:

Figure: Plot of the upper branch of f(x) for x < −2
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Figure: Plot of the upper branch of f(x) for 3 < x < 9. The
minimum point is at x = 4 + 2

√
3 ≈ 7.5.
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Example 2 continued

Note that there are also turning points at x = 4− 2
√

3, and
when x = 0, 1, y2 = 0.
Thus the final plot is

Figure: Plot of the curve y = f(x)
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Equations of Tangent and Normal

Example: Find equations of the tangent and normal to y = x2

at x = 1.

First find dy
dx , recalling that dy

dx ≡ slope of the tangent.

dy

dx
= 2x, ∴

dy

dx

∣∣∣
x=1

= 2.

Also, at x = 1 we have y = 1. Therefore using

y − y1 = m(x− x1)

where x1 = 1, y1 = 1 and m = 2, the line through (1, 1) with
slope 2 has equation

y = 2x− 1.
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Equations of Tangent and Normal

The normal is perpendicular to the tangent. Therefore

Slope of Normal =
−1

Slope of Tangent
= −1

2
.

The normal is the line through (1, 1) with slope = −1/2.
Therefore using

y − y1 = m(x− x1)

with x1 = 1, y1 = 1 and m = −1/2 yields the equation for the
normal as

y = −1
2
x +

3
2
.
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Sketches of the Tangent and Normal

(3, 0)(1, 0)(1
2 , 0)

Figure: Plot of the Tangent and Normal to the Curve
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Example: Find equations of the tangent and normal to the
curve given by

y = t2, x = t3 + 1 at t = 1.

For this we use parametric differentiation

dy

dx
=

dy
dt
dx
dt

=
2t

3t2
=

2
3

at t = 1.

Also at t = 1, (x, y) = (2, 1).
The tangent is the line through (2, 1) with slope 2

3 , i.e.

y − 1 =
2
3
(x− 2), ∴ y =

2
3
x− 1

3
.

The normal has slope −3
2 , and thus it’s equation is

y − 1 = −3
2
(x− 2), ∴ y = −3

2
x + 4.

91 / 435



Introduction
to Hyperbolic
Functions

Inverse
Hyperbolic
Functions

Hyperbolic
Identities

Hyperbolic Functions: Outline of Topics

4 Introduction to Hyperbolic Functions

5 Inverse Hyperbolic Functions

6 Hyperbolic Identities
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Definitions of Hyperbolic Functions

Definitions of Hyperbolic Functions

sinh x =
ex − e−x

2

cosh x =
ex + e−x

2

tanh x =
ex − e−x

ex + e−x
=

sinh x

cosh x
.
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Graphs of Hyperbolic Functions

Recall that

As x→∞, ex →∞ and e−x → 0

1 If y = coshx = ex+e−x

2 ,

cosh (0) = 1.

Also note that

y = cosh (−x) =
e−x + e−(−x)

2
= coshx

Therefore the curve is symmetrical about the y axis (even
function).
Also, as x→∞, y → 1

2ex →∞.
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2 If y = sinhx = ex−e−x

2 ,

sinh (0) = 0.

Also note that

y = sinh (−x) =
e−x − e(x)

2
= − sinh x

Therefore the curve is anti-symmetrical about the y axis
(odd function).
Also for the limits as x→ ±∞

As x→∞, y → 1
2
ex →∞

As x→ −∞, y → −1
2
e−x → −∞
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3 For the tanh x function

y = tanhx =
ex − e−x

ex + e−x
=

sinh x

cosh x

Therefore
tanh (0) = 0.

Also for the limits as x→ ±∞

As x→∞, y → ex

ex
→ 1

As x→ −∞, y → −e−x

e−x
→ −1
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Also note that

tanh (−x) =
sinh (−x)
cosh (−x)

= − sinh x

cosh x
= − tanh x.

Therefore tanh x is an odd function.
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sinh(θ)
cosh(θ)
tanh(θ)

Figure: Plots of the Three Main Hyperbolic Functions
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Comparison to Complex sines and cosines

Recall from complex number theory that

eiz = cos z + i sin z (6)

∴ e−iz = cos (−z) + i sin (−z)
= cos z − i sin z (7)

Adding equations (6) and (7) gives

2 cos z = eiz + e−iz

OR

cos z =
eiz + e−iz

2
≡ cosh (iz).
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Comparison to Complex sines and cosines
continued

Similarly subtracting equation (7) from equation (6) gives

2i sin z = eiz − e−iz

OR

sin z =
eiz − e−iz

2i
≡ sinh iz

i

For example

cos i =
e−1 + e

2
≈ 1.543 > 1(!!)

There is a close relationshop between hyperbolic and
trigonometric functions (more to follow later).
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Inverse Hyperbolic Functions: sinh−1 x

1 Suppose that

y = sinh−1 x, ∴ x = sinh y.

By the definition of sinh

1
2
(
ey − e−y

)
= x ⇐⇒ ey − e−y = 2x

Multiplying by ey gives

e2y − 1− 2xey = 0

or
(ey)2 − 2x(ey)− 1 = 0.

which is a quadratic equation in ey.
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Inverse Hyperbolic Functions: sinh−1 x

∴ ey =
2x±

√
4x2 + 4
2

= x±
√

x2 + 1.

Therefore

ey = x +
√

x2 + 1, or ey = x−
√

x2 + 1.

Now ey > 0 for all y, but

x−
√

x2 + 1 < 0

since √
x2 + 1 >

√
x2 = x
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Inverse Hyperbolic Functions: sinh−1 x

Thus, the second possibility (negative choice) is impossible.

ey = x +
√

x2 + 1

OR
y = sinh−1 x = lnx +

√
x2 + 1.
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Inverse Hyperbolic Functions: cosh−1 x

1 Suppose that

y = cosh−1 x, ∴ x = cosh y, so x ≥ 1.

By the definition of cosh

1
2
(
ey + e−y

)
= x ⇐⇒ ey + e−y = 2x

Multiplying by ey gives

e2y + 1− 2xey = 0

or
(ey)2 − 2x(ey) + 1 = 0.

which is a quadratic equation in ey.
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Inverse Hyperbolic Functions: sinh−1 x

∴ ey =
2x±

√
4x2 − 4
2

= x±
√

x2 − 1,

which is real since x ≥ 1. Therefore

ey = x +
√

x2 − 1, or ey = x−
√

x2 − 1.

Now ey > 0 for all y, and

x±
√

x2 − 1 > 0

are both possibilities.
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Inverse Hyperbolic Functions: sinh−1 x

Observe that

1
x +
√

x2 − 1
=

1
x +
√

x2 − 1
× x−

√
x2 − 1

x−
√

x2 − 1

=
x−
√

x2 − 1
x2 − (x2 − 1)

= x−
√

x2 − 1.

Thus

ey = x +
√

x2 − 1 or ey =
1

x +
√

x2 − 1
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Inverse Hyperbolic Functions: sinh−1 x

So
y = ln

(
x +

√
x2 − 1

)
or

y = ln
(

1
x +
√

x2 − 1

)
= − ln

(
x +

√
x2 − 1

)
i.e.

y = ± ln
(
x +

√
x2 − 1

)
y

x

Figure: Plot of cosh x. Note that for a given value of y there are two
possibilities for x.
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Hyperbolic Identities

Definitions

coth x ≡ 1
tanh x

(
c.f. cot x ≡ 1

tan x

)
(8)

sech x ≡ 1
cosh x

(
c.f. sec x ≡ 1

cos x

)
(9)

cosech x ≡ 1
sinh x

(
c.f. cosec x ≡ 1

sin x

)
(10)
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Hyperbolic Identities

From the definitions of sinh x and cosh x

cosh x + sinh x ≡ ex + e−x

2
+

ex − e−x

2
≡ ex

and similarly

cosh x− sinh x ≡ ex + e−x

2
− ex − e−x

2
≡ e−x

(cosh x + sinh x) (coshx− sinh x) ≡ exe−x ≡ 1

i.e.
cosh2 x− sinh2 x ≡ 1,

which is analogous to cos2 x + sin2 x ≡ 1.
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Hyperbolic Identities

So we have
cosh2 x− sinh2 x ≡ 1.

Now divide the above result by sinh2 x to yield

cosh2 x

sinh2 x
− 1 ≡ 1

sinh2 x
,

∴ cosech2 x ≡ coth2 x− 1,

(which is analogous to cosec2 θ ≡ 1 + cot2 θ).
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Hyperbolic Identities

Recall that

cosh x + sinh x ≡ ex

cosh x− sinh x ≡ e−x

Squaring both of these yields

cosh2 x + 2 sinhx cosh x + sinh2 x ≡ e2x (11)

cosh2 x− 2 sinhx cosh x + sinh2 x ≡ e2x (12)

and then doing (11) minus (12) yields

4 sinhx cosh x ≡ e2x−e−2x ⇐⇒ 2 sinhx cosh x ≡ e2x − e−2x

2

2 sinhx cosh x ≡ sinh 2x

Which is analogous to sin 2x ≡ 2 sinx cos x
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Hyperbolic Identities

Also recall equations (11) and (12)

cosh2 x + 2 sinhx cosh x + sinh2 x ≡ e2x

cosh2 x− 2 sinhx cosh x + sinh2 x ≡ e2x

Adding the above two expressions gives

2 cosh2 x + 2 sinh2 x ≡ e2x + e−2x

therefore dividing by 2 gives

cosh 2x ≡ cosh2 x + sinh2 x

and utilising the identity cosh2 x− sinh2 x ≡ 1 we can deduce
that

cosh 2x ≡ 1 + 2 sinh2 x

≡ 2 cosh2 x− 1.
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List of Trig and Hyperbolic Identities

Hyperbolic Trigonometric

coth x ≡ 1/ tanh x cot x ≡ 1/ tan x

sech x ≡ 1/ cosh x sec x ≡ 1/ cos x

cosech x ≡ 1/ sinh x sec x ≡ 1/ sin x

cosh2 x− sinh2 x ≡ 1 cos2 x + sinx ≡ 1

sech2 x ≡ 1− tanh2 x sec2 x ≡ 1 + tan2 x

cosech2 x ≡ coth2 x− 1 cosec2 x ≡ cot2 x + 1

sinh 2x ≡ 2 sinhx cosh x sin 2x ≡ 2 sinx cos x

cosh 2x ≡ cosh2 x + sinh2 x cos 2x ≡ cos2 x− sin2 x

cosh 2x ≡ 1 + 2 sinh2 x cos 2x ≡ 1− 2 sin2 x

cosh 2x ≡ 2 cosh2 x− 1 cos 2x ≡ 2 cos2 x− 1
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7 Introduction to Partial Derivatives

8 Higher Partial Derivatives
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Partial Differentiation

Many quantities that we measure are functions of two (or
more) variables

Example: The temperature T of a rod heated suddenly from
time t = 0 at one end

x = 0

Heat Rod Here

T = 0 Initially
x = L

Clearly T depends on:

i The distance x from the heated end

ii The time t after heating commenced.

So we write
T = T (x, t)

i.e. T is a function of the two independent variables x and t.
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Partial Differentiation

Example: (More abstractly), suppose that a function f is
defined as

f(x, y) = x2 + 3y2,

then the value of f is determined by every possible pair (x, y),
so if (x, y) = (0, 2) then

f(0, 2) = 02 + 3× 22.

Example: Suppose

g(x1, x2, . . . , xn) =
√

x2
1 + x2

2 + · · ·+ x2
n,

then
g(1, 1, . . . , 1) =

√
12 + 12 + · · ·+ 12 =

√
n.
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Partial Differentiation

Partial derivatives generalise the derivative to functions of two
or more variables.

Suppose f is a function of two independent variables x and y,
then the partial derivative of f(x, y) w.r.t x is defined as

∂f

∂x
= fx = lim

∆x→0

f(x + ∆x, y)− f(x, y)
∆x

.

Similarly, the partial derivative of f(x, y) w.r.t y is

∂f

∂y
= fy = lim

∆y→0

f(x, y + ∆y)− f(x, y)
∆y

.
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Partial Differentiation

The partial derivative of f(x, y) w.r.t x may be thought of as
the ordinary derivative of f w.r.t x obtained by treating y
as a constant.

Example: For the function f defined by

f(x, y) = x2 + 3y2,

find the partial derivative of f w.r.t x by

i Differentiating from first principles

ii Differentiating w.r.t x, treating y as a constant.
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Partial Differentiation

i First differentiate from first principles

∂f

∂x
= lim

∆x→0

f(x + ∆x, y)− f(x, y)
∆x

= lim
∆x→0

(x + ∆x)2 + 3y2 − (x2 + 3y2)
∆x

= lim
∆x→0

2x∆x + (∆x)2

∆x
= 2x.

ii Alternatively, if we differentiate f w.r.t x, treating y as a
constant, we note that the 3y2 term vanishes, hence

∂f

∂x
= 2x

as above.
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Partial Differentiation

i Similarly for y, first differentiate from first principles

∂f

∂y
= lim

∆y→0

f(x, y + ∆y)− f(x, y)
∆y

= lim
∆y→0

x2 + 3(y + ∆y)2 − (x2 + 3y2)
∆y

= lim
∆y→0

3(2y∆y + (∆y)2)
∆y

= 6y.

ii Alternatively, if we differentiate f w.r.t y, treating x as a
constant, we note that the x2 term vanishes, hence

∂f

∂y
= 6y

as above.
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Consider the heated rod problem

x

T

t

T

a ∂T
∂t is the rate of change
of T with time at
a fixed distance x.

b ∂T
∂x is the rate of change
of T with distance x at
a particular instance in time.
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Examples

Suppose
f(x, y) = y sin x + x cos2 y,

Then for the partial derivative fx

∂f

∂x
= y cos x + cos2 y

where we have treated y as a constant.

∂f

∂y
= sin x + 2x cos y(− sin y)

= sin x− x sin 2y

where we have treated x as a constant.
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Examples

Suppose

f(x, y) = tan−1
(y

x

)
then compute fx and fy.

Recall that
d
du

(
tan−1 u

)
=

1
1 + u2

Therefore, calculating fx (treating y as a constant)

fx =
1

1 +
( y

x

)2 ∂

∂x

(y

x

)
=

1

1 +
( y

x

)2 (− y

x2

)
i.e

∂f

∂x
= fx = − y

x2 + y2
.
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then compute fx and fy.

Recall that
d
du

(
tan−1 u

)
=

1
1 + u2

Therefore, calculating fx (treating y as a constant)

fx =
1

1 +
( y

x

)2 ∂

∂x

(y

x

)
=

1

1 +
( y

x
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)
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Similarly, calculating fy (treating x as a constant)

fy =
1

1 +
( y

x

)2 ∂

∂y

(y

x

)
=

1

1 +
( y

x

)2 (1
x

)
i.e

∂f

∂x
= fx =

x

x2 + y2
.
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Try to show that if f is defined as

f(x, y) = sin
√

x2 + y2,

then fx and fy are given by

fx =
x√

x2 + y2
cos
√

x2 + y2,

fy =
y√

x2 + y2
cos
√

x2 + y2.
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Exam Question 2008

If a function f(x, y) is defined as

f(x, y) = x ln
(

x

y

)
,

then find ∂f
∂x and ∂f

∂y .

Solution: For the x derivative

∂f

∂x
= 1. ln

(
x

y

)
+ x

1/y

x/y
= ln

(
x

y

)
+ 1.

For the y derivative

∂f

∂y
=½x

1
½x/y

∂

∂y

(
x

y

)
= −y

x

y2
= −x

y
.
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Example of a function with 3 variables

Suppose f(x, y, z) is defined as

f(x, y, z) = zey cos x

then

∂f

∂x
= −zey sin x

∂f

∂y
= zey cos x

∂f

∂y
= ey cos x
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The first partial derivatives may be differentiated again to
obtain second partial derivatives

fxx =
∂

∂x

(
∂f

∂x

)
=

∂2f

∂x2

fyy =
∂

∂y

(
∂f

∂y

)
=

∂2f

∂y2

fxy =
∂

∂y

(
∂f

∂x

)
=

∂2f

∂y∂x

fyx =
∂

∂x

(
∂f

∂y

)
=

∂2f

∂x∂y
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Example For the function

f = tan−1

(
x

y

)
,

where we have shown previously that for the partial derivatives
fx and fy,

fx =
y

x2 + y2
, fy = − x

x2 + y2
.

Calculate fxx by treating y as constant and applying the
quotient rule

fxx =
∂

∂x
[fx] =

∂

∂x

[
y

x2 + y2

]
=

y(−2x)
(x2 + y2)2

= − 2xy

(x2 + y2)2
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In a similar way

fyy =
∂

∂y
[fy] =

∂

∂y

[
−x

x2 + y2

]
=

−x(−2y)
(x2 + y2)2

=
2xy

(x2 + y2)2

fxy =
∂

∂y
[fx] =

∂

∂y

[
y

x2 + y2

]
=

1
x2 + y2

+
y(−2y)

(x2 + y2)2

=
x2 + y2 − 2y2

(x2 + y2)2
=

x2 − y2

(x2 + y2)2

130 / 435



Introduction
to Partial
Derivatives

Higher Partial
Derivatives

Higher Partial Derivatives

In a similar way

fyy =
∂

∂y
[fy] =

∂

∂y

[
−x

x2 + y2

]
=

−x(−2y)
(x2 + y2)2

=
2xy
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And finally

fyx =
∂

∂x
[fy] =

∂

∂x

[
−x

x2 + y2

]
=

−1
x2 + y2

− x(−2x)
(x2 + y2)2

=
x2 − y2

(x2 + y2)2
= fxy.

Fact: If fx, fy, fxy and fyx are continuous (i.e. doesn’t ’jump’)
at (x, y), then fxy = fyx. i.e. fyx = fxy holds for any f .
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Higher Order Partial Derivatives

Let
f(x, y) = xe2y.

fx = e2y fy = 2xe2y fy = 2xe2y

fxy = 2e2y fyx = 2e2y fyy = 4xe2y

fxyy = 4e2y fyxy = 4e2y fyyx = 4e2y

i.e.
fxyy = fyxy = fyyx

so the order does not matter
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Example: 2004 Exam

a Verify that f(x, y) = e−(1+a2)x cos ay is a solution of the
equation

∂f

∂x
=

∂2f

∂y2
− f.

Solution: First compute the required derivatives

∂f

∂x
= −(1 + a2)e−(1+a2)x cos ay

∂f

∂y
= −ae−(1+a2)x sin ay

∂2f

∂y2
= −a2e−(1+a2)x cos ay
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So computing the RHS (right hand side)

RHS = fyy − f

= −a2e−(1+a2)x cos ay − e−(1+a2)x cos ay

= −(1 + a2)e−(1+a2)x cos ay = LHS.

b Let g = yf(xy). Show that

y
∂g

∂y
− x

∂g

∂x
= g.
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Example: 2004 Exam

∂g

∂y
= = f(xy) + yxf ′(xy),

∂g

∂x
= y2f ′(xy),

where primes denote differentiation w.r.t the combined variable
xy.

Note: To see this, consider

d
dx

(sin 2x) = 2 cos 2x

i.e
d
dx

(f(2x)) = 2f ′(2x).
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Example: 2004 Exam

Also consider
∂

∂x
(sin xy) = y cos xy

and therefore
∂

∂x
(f(xy)) = yf ′(xy)

Hence returning to the previous example

LHS = yf(xy) +»»»»»
xy2f ′(xy)−»»»»»

xy2f ′(xy) = g(xy) = RHS

as required.
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Integration: Outline of Topics

9 Basic Integration

10 Integration by Change of Variables

11 Integration by Parts

12 Integration Of Rational Functions

13 Trigonometric Integrals

14 Definite Integration

15 Applications of Integration

137 / 435



Basic
Integration

Integration by
Change of
Variables

Integration by
Parts

Integration Of
Rational
Functions

Trigonometric
Integrals

Definite
Integration

Applications
of Integration

Indefinite Integration

Indefinite Integration

If functions f(x) and F (x) are defined such that

dF

dx
= f(x),

then the integral of f(x) is given by∫
f(x)dx = F (x) + C,

where C is an arbitrary constant.

Integration is the reverse of differentiation
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Example of Indefinite Integration

Indefinite Integration

Suppose that F (x) = x2, then

dF

dx
= 2x = f(x),

then the integral of f(x) is given by∫
2xdx = x2 + C,

where C is an arbitrary constant.
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Basic Integrals

f(x)
∫

f(x)dx

xn (n 6= −1) 1
n+1xn+1 + C

x−1 ln |x|+ C

eax 1
aeax + C

cos (ax) 1
a sin (ax) + C

sin (ax) − 1
a cos (ax) + C

1
x2+1

tan−1 x + C

Table: Table of Basic Integrals
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Basic Rules for Integration

1 The Addition Rule∫
[u(x) + v(x)] dx =

∫
u(x)dx +

∫
v(x)dx.

2 Scalar Multiplication∫
ku(x)dx = k

∫
u(x)dx,

where k is a constant.
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Basic Rules for Integration: Change of Variable

3 Integration by Change of Variable

Recall from the chain rule for differentiation that if
f = f(x) and x = x(u) is a function of u then

d
du

(f(x)) =
df

dx

dx

du
= f ′(x)

dx

du
.

Then if we integrate both sides with respect to u we obtain

f(x) =
∫

f ′(x)
dx

du
du,
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Basic Rules for Integration: Change of Variable

So from the last slide we have

f(x) =
∫

f ′(x)
dx

du
du,

but since f(x) =
∫

f ′(x)dx we obtain the following∫
f ′(x)dx =

∫
f ′(x)

dx

du
du,

now letting f ′(x) = g(x) we finally get∫
g(x)dx =

∫ (
g(x)

dx

du

)
du,

this is the rule for Integrating by Change of Variable.
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Basic Rules for Integration: Change of Variable
Procedure

∫
f(x)dx =

∫ (
f(x)

dx

du

)
du,

Then procedure for integrating by change of variables is

1 Choose a new variable u, such that f = f(u),
2 Calculate dx

du and write in terms of u

3 Rewrite the integral entirely in terms of u

4 Calculate the u integral

5 Rewrite in terms of x
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Basic Rules for Integration: Change of Variable
Example

Example: Calculate the integral∫
sin
√

x√
x

dx.

Identify the ’difficult’, ’ugly’ or ’horrible’ bit, in this case it is√
x.

Let u =
√

x ∴
du

dx
=

1
2

1√
x

=
1
2u

,

i.e.
dx

du
= 1
/(du

dx

)
= 2u.
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Basic Rules for Integration: Change of Variable
Example

Therefore applying the Change of Variable formula∫
f(x)dx =

∫ (
f(x)

dx

du

)
du,

yields the following for the integral:∫
sin
√

x√
x

dx

=
∫

sin u

½u
.2½udu

= 2
∫

sin udu

= −2 cosu + C

= −2 cos
√

x + C
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Basic Rules for Integration: Change of Variable
Example

It is worth checking this result using differentiation

d
dx

(
−2 cos

√
x + C

)
= −2

(
− sin

√
x
)
× 1

2
x−

1
2

=
sin
√

x√
x

.
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Change of Variable Example 2

Example: Calculate the integral∫ √
x
(
1 +
√

x
) 1

4 dx.

If we let u =
√

x we still end up with a term that is like

u2(1 + u)
1
4 which is still difficult to deal with.

So instead we try u = 1 +
√

x.

∴
du

dx
=

1
2
√

x
=

1
2(u− 1)

, ∴
dx

du
= 2(u− 1).

No apply the Change of Variable formula∫
f(x)dx =

∫ (
f(x)

dx

du

)
du,
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=
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(u− 1)u
1
4 2(u− 1)du

= 2
∫

(u− 1)2u
1
4 du

= 2
∫

u
1
4
(
u2 − 2u + 1

)
du

= 2
(

4
13

u
13
4 − 2

4
9
u

9
4 +

4
5
u

5
4

)
+ C

=
8
13
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√

x)
13
4 − 16

9
(1 +

√
x)

9
4 +

8
5
(1 +
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5
4 + C
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Change of Variable Example 3

Example: Calculate the integral∫
1
x2

e
1
x dx.

Let u =
1
x

, then
du

dx
= − 1

x2

∴
∫

1
x2

e
1
x dx

=
∫

1
x2

eu dx

du
du

= −
∫

eudu

= −eu + C

= −e
1
x + C.
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Some “Short Cuts”

Suppose

∫
g(x)dx = G(x)

Question: then what is

∫
g(ax + b)dx for a 6= 0 ?

Solution is to use a suitable substitution. Let

u = ax + b, ∴
du

dx
= a ⇒ dx

du
=

1
a
.∫

g(ax + b)dx∫
g(u)

1
a
du

1
a
G(u) + C =

1
a
G(ax + b) + C
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Some “Short Cuts”

Hence ∫
1

4x− 2
dx =

1
4

ln |4x− 2|+ C (a = 4)

∫
(2− x)7dx = −1

1
× 1

8
(2− x)8 + C (a = −1)∫

1
x + λ

dx = ln |x + λ|+ C (a = 1)∫
(3x− 7)−4 =

1
3

(
−1

3
(3x− 7)−3

)
+ C

= −1
9
(3x− 7)−3 + C (a = 3)∫

sin (πx + 2)dx = − 1
π

cos (πx + 2) + C (a = π).
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Some “Short Cuts”

Suppose that

∫
g(x)dx = G(x)

Then what is

∫
u′(x)g(u(x))dx ?

Note that for the left hand side of the above∫
u′(x)g(u(x))dx

=
∫

g(u)
du

dx

dx

du
du

=
∫

g(u)du

= G(u(x)) + C. (13)
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Some “Short Cuts”

Some Examples using this result∫
2x cos x2dx =

∫
cos udu (u = x2)

= sin u + C

= sin x2 + C

∫
x2(x3 + 1)9dx =

1
3

∫
3x2(x3 + 1)9dx (u = x3 + 1)

=
1
3
× 1

10
(
x3 + 1

)10 + C

=
1
30
(
x3 + 1

)10 + C
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Some “Short Cuts”

More examples using this result∫
1
x2

e
1
x dx = −

∫ (
− 1

x2

)
e

1
x dx u =

1
x

= −e
1
x + C

∫
sin x cos4 xdx = −

∫
(− sin x) cos4 xdx (u = cosx)

= −1
5

cos5 x + C

Check your answers by differentiating!
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Integration by Parts

Recall the product rule for differentiation

d
dx

(uv) = v
du

dx
+ u

dv

dx

Now integrate both sides with respect to x:

uv =
∫

v
du

dx
dx +

∫
u

dv

dx
dx

and re-arranging this gives∫
u

dv

dx
dx = uv −

∫
v
du

dx
dx,

which is known as the by-parts formula for integration.
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Example using Integration by Parts

Example: Calculate the integral∫
xexdx

Choose u = x,
dv

dx
= ex

then
du

dx
= 1, v =

∫
exdx = ex

then applying the by parts formula yields∫
xexdx = xex −

∫
ex.1dx

= xex − ex + C.

(Note that the arbitrary constant has been included right at the
very last step)
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Example using Integration by Parts

We can check this result by differentiating using the product
rule

d
dx

(xex − ex + C)

= ½½ex + xex −½½ex

= xex,

as required.
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Second example using Integration by Parts

Example: Calculate the integral∫
x2 cos λxdx (λ 6= 0).

Choose u = x2,
dv

dx
= cos (λx)

then
du

dx
= 2x, v =

1
λ

sin (λx)

then in applying the by-parts formula∫
x2 cos λxdx =

x2

λ
sin (λx)− 2

λ

∫
x sin (λx)dx.

159 / 435



Basic
Integration

Integration by
Change of
Variables

Integration by
Parts

Integration Of
Rational
Functions

Trigonometric
Integrals

Definite
Integration

Applications
of Integration

Second example using Integration by Parts

Example: Calculate the integral∫
x2 cos λxdx (λ 6= 0).

Choose u = x2,
dv

dx
= cos (λx)

then
du

dx
= 2x, v =

1
λ

sin (λx)

then in applying the by-parts formula∫
x2 cos λxdx =

x2

λ
sin (λx)− 2

λ

∫
x sin (λx)dx.

159 / 435



Basic
Integration

Integration by
Change of
Variables

Integration by
Parts

Integration Of
Rational
Functions

Trigonometric
Integrals

Definite
Integration

Applications
of Integration

Second example using Integration by Parts

Example: Calculate the integral∫
x2 cos λxdx (λ 6= 0).

Choose u = x2,
dv

dx
= cos (λx)

then
du

dx
= 2x, v =

1
λ

sin (λx)

then in applying the by-parts formula∫
x2 cos λxdx =

x2

λ
sin (λx)− 2

λ

∫
x sin (λx)dx.

159 / 435



Basic
Integration

Integration by
Change of
Variables

Integration by
Parts

Integration Of
Rational
Functions

Trigonometric
Integrals

Definite
Integration

Applications
of Integration

Second example using Integration by Parts

It is necessary to apply ’by-parts’ again on the right hand
integral, so

Choose u = x,
dv

dx
= sin (λx)

then
du

dx
= 1, v = − 1

λ
cos (λx)

Hence∫
x2 cos λxdx =

x2

λ
sin (λx)− 2

λ

{
−x

λ
cos λx−

∫
−cos (λx)

λ

}

=
x2

λ
sin (λx) +

2x

λ2
cos (λx)− 2

λ2

∫
cos (λx)dx

=
x2

λ
sin (λx) +

2x

λ2
cos (λx)− 2

λ3
sin (λx) + C
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Using the Integration by Parts Formula

Recall that the by parts formula is∫
u

dv

dx
dx = uv −

∫
v
du

dx
dx,

But how do we choose u and dv
dx?

The general idea is that (almost always)

• u should get “easier” when you differentiate it.

• v′ should get “easier” when you integrate it.

To show this let’s consider the previous example
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Using the Integration by Parts Formula

Previous Example: Calculate the integral∫
x2 cos λxdx (λ 6= 0).

If we were to choose

u = cos (λx),
dv

dx
= x2

then
du

dx
= λ sin (λx), v =

x3

3

and quite clearly v = 1
3x3 is more complex than dv

dx = x2.
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Integration of ln x

Example: Compute the following integral∫
ln xdx

Solution: Writing the integral as∫
ln xdx =

∫
1. ln xdx

Then choosing

u = lnx,
dv

dx
= 1

then
du

dx
=

1
x

, v = x
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Integration of ln x

Then applying the by-parts formula yields∫
ln xdx =

∫
1. ln xdx

= x ln x−
∫

x× 1
x

dx

= x ln x− x + C

i.e. ∫
ln xdx = x(ln x− 1) + C.
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Further Examples

Example: Compute the following integral∫
x sin (mx)

Applying ’by-parts’ yields∫
x sin (mx)dx = − x

m
cos (mx) +

1
m

∫
cos (mx)dx

= − x

m
cos (mx) +

1
m2

sin (mx) + C.

i.e. ∫
x sin (mx)dx = − x

m
cos (mx) +

1
m2

sin (mx) + C.
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Further Examples

Example: Compute the following integral

I =
∫

e2x sin xdx.

Choosing

u = sinx,
dv

dx
= e2x

then
du

dx
= cos x, v =

1
2
e2x

and applying by parts gives

I =
1
2
e2x sin x− 1

2

∫
e2x cos xdx
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Further Examples

so we have

I =
1
2
e2x sin x− 1

2

{
1
2
e2x cos x +

1
2

∫
e2x sin xdx

}
=

1
2
e2x

(
sin x− 1

2
cos x

)
− 1

4
I + K

i.e.

5
4
I =

1
2
e2x

(
sin x− 1

2
cos x

)
+ K

⇐⇒ I =
2
5
e2x

(
sin x− 1

2
cos x

)
+ C
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Aside: Alternative evaluation using complex
numbers

Note that we can also solve this last integral using complex
numbers, since

I =
∫

e2x sin xdx = Im
(∫

e2xeixdx

)
= Im

(∫
e(2+i)xdx

)
,

since eix = cosx + i sin x, where Im is the imaginary part.

Hence treating the right hand side integral as a regular
exponential integral we have

I = Im
(∫

e(2+i)xdx

)
= Im

(
1

2 + i
e(2+i)x + C

)
where C = Cr + iCi is a complex number.
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Aside: Alternative evaluation using complex
numbers

Then in attempting to evaluate the imaginary part one has

I = Im
(

1
2 + i

e(2+i)x + C

)
= Im

(
2− i
4 + 1

e(2+i)x + C

)
= Im

(
2− i

5
e2x (cos x + i sin x) + Cr + iCi

)
= −1

5
e2x cos x +

2
5
e2x sin x + Ci

=
2
5
e2x

(
sin x− 1

2
cos x

)
+ Ci

precisely the same as before.
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Some Tricks, Based on Integration By Parts

Suppose an integral I is defined as

I =
∫

sin−1 xdx =
∫

1. sin−1 xdx.

Choosing

u = sin−1 x,
dv

dx
= 1

then

recall that
du

dx
=

1√
1− x2

, v = x.
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Some Tricks, Based on Integration By Parts

Applying by parts gives

I = x sin−1 x−
∫

x× 1√
1− x2

dx

= x sin−1 x +
∫

−x√
1− x2

dx

and recalling that the right hand side integral may be solved
via a substitution u = 1− x2 to give

I = x sin−1 x +
√

1− x2 + C
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Integrating Rational Functions

In this section we are interested in evaluating integral that are
in the form of one polynomial divided by another, i.e.∫

ax + b

x2 + cx + d
dx

where in the above case the numerator of the integrand is a
polynomial of degree 1, and the denominator is a polynomial of
degree 2.

Before this however, it is essential to revise our knowledge of
partial fractions.
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The rules of Partial Fractions:

We are considering functions of the form h(x)
g(x)

1 Factorise the denominator g(x) as much as possible.

2 A linear factor g(x) = (ax + b) gives a partial fractions of
the form

A

(ax + b)
,

where A is a constant.

3 g(x) = (ax + b)2 gives partial fractions of the form

A

(ax + b)
+

B

(ax + b)2
,

where A and B are constants.
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The rules of Partial Fractions:

4 g(x) = (ax + b)3 gives partial fractions of the form

A

(ax + b)
+

B

(ax + b)2
+

C

(ax + b)3
,

where A, B and C are constants.

5 Irreducible quadratics g(x) give partial fractions of the
form

Ax + B

ax2 + bx + c

where ax2 + bx + c cannot be factorised any further.
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Partial Fractions Example

Example: Decompose f(x) using partial fractions, where

f(x) =
8x− 28

x2 − 6x + 8
.

Solution

8x− 28
x2 − 6x + 8

≡ 8x− 28
(x− 2)(x− 4)

≡ A

x− 2
+

B

x− 4

therefore, multiplying through by (x− 2)(x− 4) gives

8x− 28 ≡ A(x− 4) + B(x− 2)
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Partial Fractions Example

So we have

8x− 28 ≡ A(x− 4) + B(x− 2)

Putting x = 4 gives

2B = 4 =⇒ B = 2,

and putting x = 2 gives

−2A = −12 =⇒ A = 6.

Hence
8x− 28

x2 − 6x + 8
≡ 6

x− 2
+

2
x− 4

.
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Integrating Rational Functions

Case 1: Suppose that x2 + cx + d has two real roots, i,e.

ax2 + bx + c = (x− α)(x− β),

where α, β are both real numbers.

Example: Evaluate the indefinite integral∫
3x− 5

x2 − 2x− 3
dx.

First note that

x2 − 2x− 3 ≡ (x− 3)(x + 1)

∴
3x− 5

x2 − 2x− 3
≡ A

(x− 3)
+

B

x + 1
.
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Example: Integrating Rational Functions

Hence
3x− 5 ≡ A(x + 1) + B(x− 3).

Letting x = −1 gives

−8 = −4B =⇒ B = 2,

and letting x = 3 gives

4 = 4A =⇒ A = 1,

and hence
3x− 5

x2 − 2x− 3
≡ 1

(x− 3)
+

2
x + 1

.
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Example: Integrating Rational Functions

Therefore ∫
3x− 5

x2 − 2x− 3
dx

=
∫ (

1
x− 3

+
2

x + 1

)
dx

=
∫

1
x− 3

dx +
∫

2
x + 1

dx

= ln |x− 3|+ 2 ln |x + 1|+ C
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Example 2: Integrating Rational Functions

Case 2: Suppose that x2 + cx + d has one repeated (real)
roots, i,e.

ax2 + bx + c = (x− α)2,

where α is a real numbers. Again we use partial fractions

Example: Evaluate the indefinite integral∫
x

x2 − 2x + 1
dx.

First note that

x

x2 − 2x + 1
≡ x

(x− 1)2
≡ A

x− 1
+

B

(x− 2)2
.
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Example 2: Integrating Rational Functions

∴ x ≡ A(x− 1) + B ≡ Ax + B −A.

Comparing coefficients of x on the right hand side yields
B = 1, and comparing constant terms yields

B −A = 0 =⇒ A = B = 1.

Therefore for the integral∫
x

x2 − 2x + 1
dx

=
∫

1
x− 1

dx +
∫

1
(x− 1)2

dx

= ln |x− 1| − 1
x− 1

+ C.
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Example 3: Integrating Rational Functions

Case 3: Assume that the polynomial x2 + cx + d has no real
roots

∴ x2 + cx + d = (x− α)2 + β2

by completing the square. We then use the substitution
x− α = uβ, etc.

Example: Evaluate the indefinite integral∫
x

x2 − 4x + 6
dx

First note that the quadratic in the denominator has no real
roots, and hence we write

x2 − 4x + 6 = (x− 2)2 + 2
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Example 3: Integrating Rational Functions

So we get ∫
x

(x− 2)2 + 2
dx.

Now use a substitution, i.e

x− 2 =
√

2u,
dx

du
=
√

2,

where the
√

2 factor is used to standardise the resulting
integrals. The substitution u = x− 2 would also work, though
it leads to non-standard integrals.

Therefore

(x− 2)2 + 2 = 2u2 + 2 = 2(u2 + 1).
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Example 3: Integrating Rational Functions

Therefore ∫
x

x2 − 4x + 6
dx

=
∫

2 +
√

2u

2(u2 + 1)
.
√

2du

=
∫ √

2
u2 + 1

du +
∫

u

u2 + 1
du

=
√

2 tan−1 u +
1
2

ln
(
u2 + 1

)
+ C

=
√

2 tan−1

(
x− 2√

2

)
+

1
2

ln
(

x2 − 4x + 6
2

)
+ C

184 / 435



Basic
Integration

Integration by
Change of
Variables

Integration by
Parts

Integration Of
Rational
Functions

Trigonometric
Integrals

Definite
Integration

Applications
of Integration

Example 3: Integrating Rational Functions

Therefore ∫
x

x2 − 4x + 6
dx

=
∫

2 +
√

2u

2(u2 + 1)
.
√

2du

=
∫ √

2
u2 + 1

du +
∫

u

u2 + 1
du

=
√

2 tan−1 u +
1
2

ln
(
u2 + 1

)
+ C

=
√

2 tan−1

(
x− 2√

2

)
+

1
2

ln
(

x2 − 4x + 6
2

)
+ C

184 / 435



Basic
Integration

Integration by
Change of
Variables

Integration by
Parts

Integration Of
Rational
Functions

Trigonometric
Integrals

Definite
Integration

Applications
of Integration

Extra Examples on Integrating Rational Functions

Example: Evaluate the indefinite integral∫
x− 2

x2 − 2x + 5
dx

First note that the quadratic in the denominator has no real
roots, and hence we write

x2 − 2x + 5 = (x− 1)2 + 4
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Extra Examples on Integrating Rational Functions

So we get ∫
x− 2

(x− 1)2 + 4
dx.

Now use a substitution, i.e

x− 1 = 2u,
dx

du
= 2,

Therefore
(x− 1)2 + 4 = 4(u2 + 1)
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Therefore ∫
x− 2

x2 − 2x + 5
dx

=
∫

2u− 1
4(u2 + 1)

.2du

=
∫

u

u2 + 1
du− 1

2

∫
1

u2 + 1
du

=
1
2

ln
(
u2 + 1

)
− 1

2
tan−1 u + C

=
1
2

ln

((
x− 1

2

)2

+ 1

)
− 1

2
tan−1

(
x− 1

2

)
+ C
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Extra Examples on Integrating Rational Functions

Example: Evaluate the indefinite integral∫
x + 1

x2 − 4x + 4
dx =

∫
x + 1

(x− 2)2
dx

Now

x + 1
(x− 2)2

=
A

(x− 2)2
+

B

x− 2
=

A + B(x− 2)
(x− 2)2

=⇒ A + B(x− 2) = x + 1,

and equating coefficients yields

A = 3, B = 1.
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Extra Examples on Integrating Rational Functions

Therefore we have ∫
x + 1

x2 − 4x + 4
dx

=
∫

x + 1
(x− 2)2

dx

=
∫

3
(x− 2)2

+
1

x− 2
dx

= −3(x− 2)−1 + ln |x− 2|+ C
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Extra Examples

Try to evaluate these integrals yourself

1 Show that∫
5x + 13

x2 + 5x + 6
dx = 2 ln |x + 3|+ 3 ln |x + 2|+ C

2 Show that∫
x + 1

x2 − 4x + 4
dx = ln |x− 2| − 3

x− 2
+ C

3 Show that∫
x− 2

x2 − 2x + 5
dx =

1
2

ln
(

(x− 1)2

4

)
−1

2
tan−1

(
x− 1

2

)
+C
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More complicated areas

If the degree (i.e. highest power) in the numerator is ≥ the
degree of the denominator, then start with long division.
Example: Evaluate the indefinite integral∫

x3 + 2x

x− 1
dx

First we do the long division

x2 + x + 1
x− 1

)
x3 + 2

− x3 + x2

x2

− x2 + x

x + 2
− x + 1

3
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More complicated areas

Hence the integrand may be written as

x3 + 2x

x− 1
= x2 + x + 3 +

3
x− 1

and therefore the integral evaluates to∫
x3 + 2x

x− 1
dx =

x3

3
+

x2

2
+ 3x + 3 log |x− 1|+ C
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Integrals involving roots of quadratics

Example: Evaluate the indefinite integral

I =
∫

1√
1 + x2

dx.

Let

x = sinhu, =⇒ dy

dx
= coshu.

Then

I =
∫

1√
1 + sinh2 u

cosh udu

=
∫

1du (using cosh2 u = 1 + sinh2 u)

= u + C

= sinh−1 x + C
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Integrals involving roots of quadratics

Example: Evaluate the indefinite integral

I =
∫

1√
14− 12x− 2x2

dx =
1√
2

∫
1√

7− 6x− x2
dx.

The quadratic inside the surd is irreducible, so we complete
the square

7− 6x− x2 = 7− (x + 3)2 + 9 = 16− (x + 3)2.

Therefore the integral may be written as

I =
4√
2

∫
1

16− (x + 3)2
dx.
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Integrals involving roots of quadratics

So we have

I =
4√
2

∫
1

16− (x + 3)2
dx.

Now solve using a substitution. Let

x + 3 = 4u, =⇒ dx

du
= 4,

and therefore for the integral

I =
4√
2

∫
1√

16− 16u2
du

1√
2

∫
1√

1− u2
du.
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Integrals involving roots of quadratics

To solve the integral ∫
1√

1− u2
du

use the substitution

u = sin θ, =⇒ du

dθ
= cos θ.

Therefore

I =
1√
2

∫
1

»»»cos θ
»»»cos θdθ

=
θ√
2

+ C =
1√
2

sin−1 u + C

=
1√
2

sin−1

(
x + 3

4

)
+ C. (14)
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Integrals involving roots of quadratics

Now for some standard results...

After completing the square: ±(x + α)2 ± β2,

let uβ = x + α, =⇒ ±u2 ± 1.

∫
1

u2 + 1
du = tan−1 u,

∫
1√

1− u2
du = sin−1 u,∫

1√
u2 − 1

du = cosh−1 u,

∫
1√

u2 + 1
du = sinh−1 u.
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Integrals involving roots of quadratics

In general, if you encounter√
ax2 + bx + c

inside an integral

• Complete the square to get√
|a|
√
±(x + α)2 ± β2

• and then use a substitution, either trigonometric or
hyperbolic.
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Some trigonometric integrals

i Evaluate ∫
cos2 xdx

=
∫

1
2

(cos 2x + 1) dx

=
1
4

sin 2x +
1
2
x + C

ii Evaluate ∫
sin2 xdx

=
∫

1
2
(1− cos 2x)dx

=
1
2
x− 1

4
sin 2x + C
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Some trigonometric integrals

iii Evaluate

I =
∫

cos5 xdx.

=
∫

cos x(1− sin2 x)2dx.

exploiting the odd power of cosine. Now use the
substitution

u = sinx,
du

dx
= cosx,

and hence

I =
∫

(1− u2)2du =
∫ (

1− 2u2 + u4
)
du

= u− 2
3
u3 +

1
5
u5 + C

= sin x− 2
3

sin3 x +
1
5

sin5 x + C.
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Some trigonometric integrals

In general,

I =
∫

sin2n+1 xdx =
∫

(1− cos2 x)n sin xdx,

can be solved via the substitution u = cos x.

Similarly, odd powers of cos x, sinh x and cosh x can be dealt
with in a similar manner.
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Definite Integrals

If F is a function,

[F (x)]ba or [F (x)]x=b
x=a

means F (b)− F (a).

e.g
[
x2
]3
2

= 32 − 22 = 5.

If

∫
f(x)dx = F (x)

then the definite integral∫ b

a
f(x)dx = [F (x)]ba = F (b)− F (a).
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Definite Integrals

Example: ∫ 2

1
x2dx =

[
1
3
x2

]2

1

=
1
3
(
23 − 13

)
=

7
3
.

Note: Including the arbitrary constant C in the above integral
would make no difference.

203 / 435



Basic
Integration

Integration by
Change of
Variables

Integration by
Parts

Integration Of
Rational
Functions

Trigonometric
Integrals

Definite
Integration

Applications
of Integration

Some Properties of Definite Integrals

1 Reversing the limits of integration. If b > a then∫ b

a
f(x)dx = −

∫ a

b
f(x)dx

2 Integrals over length zero∫ a

a
f(x)dx = 0,

3 Additivity of integration on intervals. If c is any element of
[a, b], then∫ c

a
f(x)dx =

∫ b

a
f(x)dx +

∫ c

b
f(x)dx.

4 x and y are dummy variables, meaning∫ b

a
f(x)dx =

∫ b

a
f(y)dy.
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Applications and Significance of Integration

• We introduced integration as the process of
“antidifferentiation”, meaning a process by which the
‘anti-derivative’ of a function may be found.

• However, integration is also a way of calculating area, for
example, the area under a curve.

• This is achieved by summing the contribution of lots of
infinitesimally small pieces.

• To demonstrate, consider the area bounded by the x axis,
the lines x = a, x = b and the curve y = f(x), as shown
in the following diagram.
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y

x

y =
f(x)

x = a x = b

Theorem

We can show that the shaded area above is∫ b

a
f(x)dx.
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Applications and Significance of Integration

Proof.

Let A = area from say, the origin O to the point x under the
curve. Then

y

x

y =
f(x)

x =
a

x = bxx +
hh

A(x + h) = A(x) + hf(x),

where hf(x) is the area of the shaded rectangle.
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Proof.

Therefore
A(x + h)−A

h
≈ f(x).

Now letting h→ 0 yields

dA
dx

= f(x) =⇒ A(x) =
∫

f(x)dx.

Area from x = a to x = b therefore is

A(b)−A(a) =
∫ b

a
f(x)dx.
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Applications and Significance of Integration

Example: Find the area A of an ellipse, given by the equation

x2

a2
+

y2

b2
= 1,

y

x

(0, b)

(0,−b)

(a, 0)(−a, 0)

A1
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Applications and Significance of Integration

Note from the previous diagram, that A = 4×A1 by symmetry

y

x

(0, b)

(0,−b)

(a, 0)(−a, 0)

A1

y = b
√

1− x2

a2
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So for the area A

A = 4
∫ a

0
b

√
1− x2

a2
dx

= 4b

∫ a

0
b

√
1− x2

a2
dx

Solve this integral by substitution. Let

x

a
= sinu, ⇒ dx

du
= a cos u

and √
1− x2

a2
=
√

1− sin2 u = cosu.
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So we have

A = 4b

∫ u2

u1

cos u(a cos u)du.

Important note: In changing the variable it is also very
important to change the limits, i.e. find numerical values for u1

and u2.

When x = a, sin u = 1, ∴ u =
π

2
.

When x = 0, sin u = 0, ∴ u = 0.

Therefore we have

A = 4ab

∫ π
2

0
cos2 udu

212 / 435



Basic
Integration

Integration by
Change of
Variables

Integration by
Parts

Integration Of
Rational
Functions

Trigonometric
Integrals

Definite
Integration

Applications
of Integration

Applications and Significance of Integration

So proceeding with the integral gives

A = 4ab

∫ π
2

0
cos2 udu

= 4ab

∫ π
2

0

(
1
2

+
1
2

cos 2u

)
du

= 4ab

(
1
2
u +

1
4

sin 2u

)
= 4ab

(π

4
+ 0− (0 + 0)

)
= πab.

Also note that for a circle, a = b giving A = πa2.
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Past Exam Question (1997)

Sketch the region enclosed by the curve y = 1/(1 + x2) and
the line y = 1/2 and find it’s area.

Apply the recipe for curve sketching

• No vertical asymptotes

• An even function

• Passes through (0, 1)
• y 6= 0, and in-fact y > 0 for all x.

• y → 0 as x→ ±∞.

• For the turning points

dy

dx
= − 2x

(1 + x2)2
= 0 when x = 0.
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Past Exam Question (1997)

** Sketch Required **

A =
∫ 1

−1

1
1 + x2

dx− (Area of Rectangle)

=
∫ 1

−1

1
1 + x2

dx− 2× 1
2

=
[
tan−1 x

]1
−1
− 1

=
π

4
−
(
−π

4

)
− 1 =

π

2
− 1.
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Another example

Question: Find the area bounded by the curve
y = x2 − 6x + 5 and the x axis between x = 1 and x = 3.

A =
∫ 3

1
ydx =

∫ 3

1

(
x2 − 6x + 5

)
dx

=
[
1
3
x3 − 3x2 + 5x

]3

1

= −5
1
3
.

But why is the area negative? Let’s draw a sketch.
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Another example

-10

-8

-6

-4

-2

0

2

4

6

8

10

0 1 2 3 4

y = x2 − 6x + 5

-10

-8

-6

-4

-2

0

2

4

6

8

10

0 1 2 3 4

0

Regions below the x axis give a negative area!
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Improper Integrals

Improper integrals are when the range of integration is infinite.

Suppose that I is defined as

I =
∫ b

a
f(x)dx,

then we can define an improper integral as∫ ∞

a
f(x)dx = lim

b→∞
I .
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Improper Integrals

Example: Consider the integral

I =
∫ ∞

1

dx

xn
, where n > 1.

Then ∫ ∞

1

dx

xn
= lim

b→∞

∫ b

1

dx

xn

= lim
b→∞

(
1

n− 1

[
1− 1

bn−1

])
=

1
n− 1
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1
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16 Introduction to Differential Equations
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Ordinary Differential Equations
Classification of Ordinary Differential Equations

Much of engineering and physical science (also economics etc)
can be reduced to the solution of equations which involve one
or more derivatives of an unknown function.

Example

Newton’s Second Law

m
d2

dt2
(x(t)) = F

(
t, x(t),

dx

dt

)
. (15)

i.e. F = ma, where x ≡ the (unknown) position of the particle

To determine the behaviour of a particle it is necessary to find
a function x(t) such that it satisfies (15).
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Ordinary Differential Equations
Classification of Ordinary Differential Equations

If the unknown function depends in a single independent
variable only, ordinary derivatives appear in the differential
equation and it is said to be an ordinary differential equation
(O.D.E).

If the derivatives are partial derivatives, then the equation is
called a partial differential equation (P.D.E).
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Ordinary Differential Equations
Classification of Ordinary Differential Equations: Example of an O.D.E

Example (RLC Series Circuit)

Consider the following series circuit comprised of a resistor, a
capacitor and an inductor. This circuit is known as an RLC
circuit

−+
I

RLC

E

Figure: An RLC Circuit
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Classification of Ordinary Differential Equations: Example of an O.D.E

Example (RLC Series Circuit (continued))

L
d2I

dt2
+ R

dI

dt
+

1
C

I = E (16)

where

I ≡ Current Flowing in a Circuit

C ≡ Capacitance

R ≡ Resistance

L ≡ Inductance

E ≡ Voltage

where C, R, L and E are constants and I is the unknown
function to be found.
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Classification of Ordinary Differential Equations: Example of an P.D.E

Example (The Beam Equation)

The Beam Equation provides a model for the load carrying and
deflection properties of beams, and is given by

∂2u

∂t2
+ c2 ∂4u

∂x4
= 0.

In this course we only deal with ODEs. Next year we will deal
with the solution of PDEs.
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Classification of Ordinary Differential Equations: Order of an ODE

• The order of a differential equation is the order of the
highest derivative that appears in the equation.

• For example, equation (16) is a second order ode

• Another example: The following is a third order ode

y
′′′

+ 2exy
′′

+ yy
′
= x4

where

y
′
=

dy

dx
, y

′′
=

d2y

dx2
, . . .

• More Generally

y(n) = f
(
x, y, y

′
, y

′′
, . . . , y(n−1)

)
(17)

is an nth order ode.
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Solutions of some ODEs

A solution φ of the ODE (17) is a function such that

φ
′
, φ

′′
, . . . , φ(n)

all exist and satisfy

φ(n) = f
(
x, φ(x), φ

′
(x), φ

′′
(x), . . . , φ(n−1)(x)

)
.
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Solutions of some ODEs

Example

Consider the first order ODE for radioactive decay

dR

dt
= −kR

where k is a constant.

This has the solution

R = φ(t) = ce−kt

where c is an arbitrary constant of integration.
We can verify that this solution:

dR

dt
= −kce−kt = −kR.
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Example

Show that the following second order ODE

x2y
′′ − 3xy

′
+ 4y = 0

has the solution
y = φ = x2 ln x
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Solution (...continued)

First calculate the required derivatives

φ
′
(x) = 2x log x +

x2

x
= 2x log x + x

φ
′′
(x) = 2 log x + 2x

1
x

+ 1

= 2 log x + 3.

Now substitute these derivatives into the RHS of the ODE to
yield

x2 [2 log x]− 3x [2x log x + x] + 4x2 log x

= 2x2 log x + 3x2 − 6x2 log x− 3x2 + 4x2 log x

= 0 as required.
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Solution (...continued)

First calculate the required derivatives

φ
′
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x2

x
= 2x log x + x

φ
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1
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= 2x2 log x + 3x2 − 6x2 log x− 3x2 + 4x2 log x

= 0 as required.
230 / 435



Introduction
to Differential
Equations

First Order
Separable
ODEs

First Order
Linear ODEs

Initial Value
Problems

Ordinary Differential Equations
Linear and non-Linear ODEs: Example of a Linear Equation

A linear ODE of order n can be written as

a0(x)y(n) + a1(x)y(n−1) + · · ·+ an(x)y = g(x)

i.e it is a linear function of y, y
′
, y

′′
, . . . , y(n).

If it cannot be written in this form then it is said to be
non-linear.

Example

Legendre’s Equation

(1− x2)y
′′ − 2xy

′
+ k2y = 0

is ubiquitous in problems with spherical symmetry (e.g a
Hydrogen atom), and is a linear equation.
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Example

The motion of simple pendulum can be modelled using the
equation

d2θ

dt2
+

g

l
sin θ = 0

and is non-linear, due to the sin θ term.

θ

mg

l
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Example (...Continued)

However note that if θ is small then sin θ ≈ θ (from Taylor
series), in which case a linear approximation to the pendulum
equation is

d2θ

dt2
+

g

l
θ = 0,

which is linear.
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In many cases, first order ODEs can be written in the form

y
′
= f(x, y). (18)

Example

Examples of this are the following equations

y
′
= sinx

y
′
= xy + x3.

Our task is, given an f(x, y), is to find a y such that it satisfies
equation (18).
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When y
′
= f(x) then this is particularly simple.

Example

y
′
= sinx

i.e. What function, when differentiated gives sin x.

We integrate both sides∫
y
′
dx =

∫
sin xdx

to yield the general solution of the ODE

y = − cos x + C,

general because it involves the arbitrary constant C.
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Example (...Continued)

We can check the solution by differentiating

dy

dx
= y

′
= sinx.

which satisfies the original equation.
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Example

Find a solution of the equation

dy

dx
= x.

Solution: Integrating both sides∫
dy

dx
dx =

∫
xdx,

gives the general solution as

y(x) =
1
2
x2 + C.

which we can easily check by differentiating.
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Example
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which we can easily check by differentiating.
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Many first order ODEs can de reduced to the form

g(y)
dy

dx
= f(x). (19)

which is called a separable ODE.

If the equation can be written like this we can ‘separate the
variables’ to give

g(y)dy = f(x)dx (20)

where terms involving y occur only on the LHS, and terms
involving x occur only on the right hand side.
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Many first order ODEs can de reduced to the form

g(y)
dy

dx
= f(x). (19)

which is called a separable ODE.

If the equation can be written like this we can ‘separate the
variables’ to give

g(y)dy = f(x)dx (20)

where terms involving y occur only on the LHS, and terms
involving x occur only on the right hand side.
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We can now integrate both sides of (20) to yield∫
g(y)dy =

∫
f(x)dx

and carrying out the two integrals in the above leads to the
general solution of (19).
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Example

Find the general solution to the ODE

9y
dy

dx
+ 4x = 0.

Solution

Separating the variables we have

9ydy = −4xdx ⇐⇒

9
∫

ydy = −4
∫

xdx

9
2
y2 = −4

2
x2 + C
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Solution (continued)

i.e. the general solution is

x2

9
+

y2

4
= K

which describes a ‘family’ of ellipses.

We can check our solution by differentiating

2
9
x +

2
4
yy

′
= 0

i.e
9yy

′
+ 4x = 0.
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Example

Find the general solution to the ODE

dy

dx
=

y + 1
x + 1

Solution

Separating the variables and integrating yields

1
y + 1

dy =
1

x + 1
dx∫

1
y + 1

dy =
∫

1
x + 1

dx
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Solution (continued)

Carrying out the necessary integration gives

ln |y + 1| = ln |x + 1|+ C

and using log a/b = log a− log b we can write this as

ln
∣∣∣∣y + 1
x + 1

∣∣∣∣ = C

or
y + 1
x + 1

= eC = K

Again we can easily check this using differentiation.
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Example

Solve the ODE
dy

dx
= 1 + y2

Solution

dy

1 + y2
= dx∫

dy

1 + y2
=
∫

dx

arctan y = x + C

y = tan (x + C).

244 / 435



Introduction
to Differential
Equations

First Order
Separable
ODEs

First Order
Linear ODEs

Initial Value
Problems

Ordinary Differential Equations
Separable Equations: Another Example

Solution (..continued)

Again we can check using differentiation

y
′
=

d
dx

(tan (x + C))

= sec2 (x + C)

= 1 + tan2 (x + C)

= 1 + y2,

and hence the original equation is satisfied.
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Example

Solve
dy

dx
− y(y + 1)

x(x− 1)
= 0

finding y explicitly (i.e y = f(x).

Solution

This equation is separable, thus separating the variables and
integrating gives ∫

dy

y(y + 1)
=
∫

dx

x(x− 1)
.
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Example

Solve
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Solution

This equation is separable, thus separating the variables and
integrating gives ∫

dy

y(y + 1)
=
∫
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.
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Solution

And to solve the integrals we use partial fractions to give∫ [
1
y
− 1

y + 1

]
dy =

∫ [
−1

x
+

1
x− 1

]
dx

ln y − ln (y + 1) = − ln x + ln (x− 1) + C

ln
(

y

y + 1

)
= ln

(
x− 1

x

)
+ C

y + 1
y

= e−C x

x− 1

i.e. The explicit solution is y =
x− 1

Kx− x + 1
.
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Example

Solve the equation

(y + x2y)
dy

dx
= 1.

Solution

y(1 + x2)
dy

dx
= 1∫

ydy =
∫

1
x2 + 1

dx

y2

2
= arctanx + C

i.e. the solution is y = ±
√

2 arctanx + 2C.
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Example

Solve the equation

(y + x2y)
dy

dx
= 1.

Solution

y(1 + x2)
dy

dx
= 1∫

ydy =
∫

1
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dx

y2
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= arctanx + C

i.e. the solution is y = ±
√

2 arctanx + 2C.
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First order linear ODEs are equations that may be written in
the form

dy

dx
+ p(x)y = q(x)

Note that these equations are not necessarily separable.
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Consider the equation

dy

dx
+

1
2
y =

3
2

(21)

which happens to be separable and linear

Solving via the separation of variables method:

dy

dx
=

3− y

2
⇐⇒

∫
dy

y − 3
= −1

2

∫
dx

Integrating and simplifying yields

ln (y − 3) = −x

2
+ C ⇐⇒ y = Ke−

x
2 + 3

where K = eC is a constant of integration.
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However note that the original differential equation

dy

dx
+

1
2
y =

3
2

can be written as

e
x
2
dy

dx
+

1
2
e

x
2 y = e

x
2
3
2

by multiplying through by e
x
2 .

Now observe that the LHS can be written as an exact derivative

d
dx

(
ye

x
2

)
=

3
2
e

x
2
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Now integration of this yields

ye
x
2 = 3e

x
2 + C ⇐⇒ y = 3 + Ce−

x
2

which is the same result as before.

The factor e
x
2 that we multiplied the equation through is

known as the integrating factor, or I.F.
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Please note that the general derivation described here is not
examinable, but it’s application is.

Consider the equation

dy

dx
+ p(x)y = q(x)

we then multiply through by µ(x) (the integrating factor which
is to be found) to yield

µ(x)
dy

dx
+ µ(x)p(x)y = µ(x)q(x)
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We then add and subtract y dµ
dx to the LHS

µ(x)
dy

dx
+

Plus︷︸︸︷
y
dµ

dx︸ ︷︷ ︸
d
dx

(µy)

+µ(x)p(x)y −

Minus︷︸︸︷
y
dµ

dx
= µ(x)q(x)

which gives

d
dx

(µ(x)y) + y

[
p(x)µ(x)− dµ

dx

]
= µ(x)q(x),

and we want to choose a µ(x) such that

dµ

dx
− µ(x)p(x) = 0.
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i.e. ∫
dµ

µ
=
∫

p(x)dx ⇐⇒ ln µ =
∫

p(x)dx

Therefore we finally have for the Integrating Factor µ

µ(x) = e
R

p(x)dx,

and this is the general formula for the integrating factor (you
should learn this!).

Note that there is no need for an arbitrary constant of
integration.
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Now the original ODE becomes

d
dx

(µ(x)y) = µ(x)q(x)

and integrating yields

µ(x)y =
∫

µ(x)g(x)dx + C

or

y =
∫

µ(x)g(x)dx + C

µ(x)

Thus, 1st order linear ODEs can always be solved.
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Note Before we attempt to solve such equations we should
always make sure that the equation is in “standard form”, i.e.

dy

dx
+ p(x)y = q(x)

i.e: The factor in front of the first derivative should be 1!!
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Example

Find the general solution to the following ODE:

dy

dx
+ 2y = e−x

Solution

Note that this equation is not separable. We have

p(x) = 2, q(x) = e−x

First we find the integrating factor:

µ(x) = e
R

p(x)dx = e
R

2dx = e2x.
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Solution Continued

Now multiply the entire equation through by µ(x)

e2x dy

dx
+ 2e2xy = e2xe−x = ex.

i.e
d
dx

(
e2xy

)
= ex

and integrating both sides yields

ye2x = ex + C ⇐⇒ y = e−x + Ce−2x.
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Example

Find the general solution to the following ODE:

cos x
dy

dx
+ y sin x =

1
2

sin 2x

Solution

First we put the equation into standard form and simplify:

dy

dx
+ y tan x =

sin 2x

2 cosx
=

»»»»2 cosx sin x

»»»»2 cosx
= sinx.
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Example

Find the general solution to the following ODE:

cos x
dy

dx
+ y sin x =

1
2

sin 2x

Solution

First we put the equation into standard form and simplify:

dy

dx
+ y tan x =

sin 2x

2 cosx
=

»»»»2 cosx sin x

»»»»2 cosx
= sinx.
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Example Continued

Next we find the integrating factor µ(x)

µ(x) = e
R

tan xdx = e− ln (cos x) =
1

eln (cos x)
=

1
cos x

.

Please note that a very common error is to write

e− ln (cos x) = cosx
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Solution Continued

We now multiply the (standard) equation through by µ(x) to
give

1
cos x

dy

dx
+

tan x

cos x
y = tanx

i.e.
d
dx

( y

cos x

)
= tanx

We now integrate to give

y

cos x
=
∫

tan xdx + C = − ln (cosx) + C

So for the general solution we have

y = C cos x− cos x ln (cosx).
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• So far the solutions we have obtained contain an arbitrary
constant. In engineering applications interest is in a
particular solution satisfying the initial conditions (IC).

• Typically we may be given the information

y(x0) = y0

and this information enables us to determine the arbitrary
constant.

• An ODE together with an initial condition is called an
initial value problem (IVP).
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In order to solve an IVP we apply the following two steps

1 Find the general solution, containing the arbitrary constant

2 Then apply the initial condition to determine the arbitrary
constant.
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Example

Solve the initial value problem

(x2 + 1)
dy

dx
+ y2 + 1, y(0) = 1.

Solution

First we find the general solution we find the general solution,
so we solve the equation via separation of variables

(x2 + 1)
dy

dx
= −(y2 + 1)⇒

∫
1

y2 + 1
dy = −

∫
1

x2 + 1
dx
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Solution (..continued)

which yields
arctan y = − arctan x + C

We now apply the initial condition

y(0) = 1 =⇒ arctan(1) = − arctan(0) + C
π

4
= 0 + C =⇒ C =

π

4
.

And hence the solution to the IVP is

arctan(y) + arctan(x) =
π

4
.

Note that it is acceptable to stop here, although it is possible
to further simplify as follows
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Solution (..continued)

arctan(y) + arctan(x) =
π

4
tan [arctan(y) + arctan(x)] = tan

[π
4

]
= 1.

and using the composite angle formula for tan(a + b), i.e

tan(a + b) =
tan a + tan b

1− tan a tan b

the solution reduces to

y + x

1− xy
= 1 ⇒ y =

1− x

1 + x
.
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Example

Solve the IVP

2y
′ − 4xy = 2x, y(0) = 0.

Solution

First we rewrite as
y
′ − 2xy = x,

This is first order linear, and so we calculate the integrating
factor µ as

µ(x) = exp
(∫
−2xdx

)
= e−x2

.

∴ y
′
e−x2 − 2xe−x2

y = xe−x2
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Solution (..continued)

d
dx

(
ye−x2

)
= xe−x2 ⇒ ye−x2

=
∫

xe−x2
dx,

ye−x2
= −1

2
e−x2

+ C ⇒ y = −1
2

+ Cex2
.

Now apply the condition y(0) = 0 to give

0 = −1
2

+ C ⇒ C =
1
2

and so the solution is

y =
1
2

[
ex2 − 1

]
.
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Solution (..continued)
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Example

Solve the IVP

xy
′
+ 2y = 4x2, y(1) = 2.

Solution

First write the equation in the standard form

y
′
+

2
x

y = 4x

and then we can calculate the integrating factor as

µ(x) = exp
[∫

2
x

dx

]
= e2 ln |x| = eln x2

= x2.
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Solution (..continued)

∴ x2y
′
+ 2xy = 4x3 ⇒ d

dx

(
x2y
)

= 4x3

and integrating yields

x2y = x4 + C ⇒ y = x2 +
C

x2
.

Now apply the condition y(1) = 2 to give

y(1) = 1 + C = 2 ⇒ C = 1.

and so the solution is

y = x2 +
1
x2
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A General Note on the Solution to Differential Equations

• Warning: In solving a first order linear equation the
solution containing the arbitrary constant describes
all possible solutions.

• However for a nonlinear differential equation, “additional”
solutions may occur.

• Strictly speaking the term general solution should only be
discussed when discussing linear differential equations.
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Example

The velocity v satisfies the 1st order ODE (derived from
F = ma),

v
dv

dr
= −gR2

r2

where

g ≡ Acceleration due to gravity

R ≡ The radius of the earth

r ≡ Distance from the centre of the earth
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Example: Calculating the Escape Velocity from Earth

Solution

First we find the general solution to the ODE via separation of
variables∫

vdv = −gR2

∫
dr

r2
+ C ⇒ 1

2
v2 =

gR2

r
+ C.

Next we determine C. Suppose that on the earth’s surface,
when r = R, v = v0 (the initial velocity), then

1
2
v2
0 =

gR2

R
+ C ⇒ C =

1
2
v2
0 − gR
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Solution (..continued)

and therefore the specific solution is given by

1
2
v2 =

gR2

r
+

1
2
v2
0 − gR.

• The question now is, what is the escape velocity?

• We require v > 0 always. If v = 0 then the projectile stops
moving upwards and begins to fall.

• i.e. We need to ensure that v > 0 (never v = 0).

• Note that if v2
0 − 2gR ≥ 0 then v2 6= 0.

• So the minimum v0 required for this is v0 =
√

2gR.
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Example: Calculating the Escape Velocity from Earth

Solution

Note that if v0 =
√

2gR then

v2 =
2gR2

r

which is never zero.

Thus v0 =
√

2gR is the minimum required velocity, or the
escape velocity, and

v0 ≈ 11.2km/s or 6.95 miles/second.
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Ordinary Differential Equations
Example: Determining the Time of Death

• Suppose we wish to estimate the time of death of
someone following an accident or homicide.

• The surface temperature of an object changes at a rate
that is proportional to the difference between the object
and the ambient temperature of the environment.

• This is Newton’s law of cooling, and is represented by the
first order linear differential equation

dθ

dt
= −k(θ − T )

where

θ = θ(t) ≡ Body temperature

T ≡ Environment temperature

k = Constant (of Proportionality)
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Note that if

θ > T =⇒ dθ

dt
< 0 i.e. Body cools

and if

θ = T =⇒ dθ

dt
= 0 i.e. no change in θ
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Example: Determining the Time of Death

Solution

First find the general solution to the cooling equation

dθ

dt
= −k(θ − T ).

Separating the variables and integrating gives∫
dθ

θ − T
= −k

∫
dt ⇒ ln(θ − T ) = −kt + C

i.e the general solution is

θ = T + Ce−kt.
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Example (..continued)

Now suppose that at t = 0 the body is discovered with
temperature θ0. At the time of death td, the body temperature
θd = 37°C (=98.6°F).

i.e. θ(0) = θ0 ⇒ θ0 = T + C

and therefore the specific solution is

θ = T + (θ0 − T )e−kt. (22)

However we do not know k. However we can determine k by
making a second measurement of body temperature at some
later time t1.
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Solution (..continued)

Suppose θ = θ1 when t = t1, then

θ1 = T + (θ0 − T )e−kt1

i.e. k = − 1
t1

ln
(

θ1 − T

θ0 − T

)
(23)

Finally, to find td, substitute θ = θd and t = td into (22) to
give

θd = T + (θ0 − T )e−ktd ⇒ td = −1
k

ln
[
θd − T

θ0 − T

]
where k is given by (23).
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Solution (..continued)

For example, suppose that a corpse at t = 0 is 85°F and 74°F
two hours later. The ambient (room) temperature is 68°F.

Then

k = −1
2

ln
(

74− 68
85− 68

)
= 0.521

and therefore

td = − 1
0.521

ln
[
98.6− 68
85− 68

]
≈ −1.129 hours

i.e. the body was discovered approx 1 hour 8 minutes after
death.
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Example: Epidemics

Divide the population into two parts

i Those with disease which can infect others (y)

ii Those who are susceptible (x). where x + y = 1.

Disease spreads by contact between sick and well members.
The rate of spread dy

dt is proportional to the number of contacts
xy.

Thus

dy

dt
= αxy = α(1− y)y, with y(0) = y0.
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Example: Epidemics

First we find the general solution:∫
dy

y(1− y)
= α

∫
dt∫ [

1
y

+
1

1− y

]
dy = αt + C

ln |y| − ln |1− y| = αt + C ⇒ y = Ceαt − yCeαt

which solves to give

y =
Ceαt

1 + Ceαt
.
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Now apply the initial condition to give

y0 =
1

1
C + 1

, ⇒ 1
C

=
1
y0
− 1.

and therefore

y(t) =
1

1 +
(

1
y0
− 1
)e−αt =

y0

y0 + (1− y0)e−αt

and note that as t→∞, y(t)→ y0/y0 = 1, meaning that
eventually, all the population will be infected.
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20 Introduction to Vectors

21 The Vector Scalar Product

22 The Vector Cross Product
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Vectors
Introduction

In engineering applications many physical quantities have
direction as well as magnitude.

Definition (Scalar)

A scalar quantity is a quantity that is completely described by
magnitude only

Examples of scalars are

• Temperature

• Mass

• Speed
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Introduction

Definition (Vector)

A vector is a quantity that requires specification of both
magnitude and direction.

Examples of vectors are

• Force: e.g. A force of 12N vertically downwards

• Velocity: e.g. A velocity of 12m/s to the right

• Momentum

• Magnetic field

Notation: with be either

~a or a

in textbooks, exams etc.
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Introduction: Graphical Representation of a Vector

A

B

a

Figure: A Vector

• The line from A to B (as
indicated by the arrows) is
a vector

• It has magnitude equal to
the length of AB, and
direction as shown

• We write
−−→
AB or a to

represent this vector.
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Introduction: Vector Equality

A

B

a

C

D

c

E

F

Figure: A Vector

• Two vectors are equal
when they have both
same magnitude and
direction.

• i.e
−−→
AB =

−−→
CD.

• But
−−→
AB 6=

−−→
EF as they

differ in both magnitude
and direction.

• Note that
−−→
AB 6=

−−→
EF

even if they had the same
length.
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Addition of Vectors

Two vectors a and b are added “head to tail”, to find the sum
a + b.

a

b

a
b

a + b

Figure: Vector Addition of a + b

a

b

a

b

b + a

Figure: Vector Addition of b + a
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Addition of Vectors

Note that vector addition is associative, i.e.

a + b = b + a

as the resulting vectors have the same magnitude and direction.
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Addition of Vectors

A B

D C−−→
DC

−−→
DB

−−→
DA

−−→
AB

−−→
BC

Figure: Vector Addition

Note that
−−→
DA +

−−→
AB =

−−→
DB and

−−→
DB +

−−→
BC =

−−→
DC
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Example: Forces on an Object

F1 = 8N

F2 = 5N Rθ

Figure: Forces acting on a body

R = F1 + F2

and |R| = the magnitude of R, given by Pythagoras as

|R| =
√

82 + 52 ≈ 9.4N
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Vectors
Example: Forces on an Object

F1 = 8N

F2 = 5N Rθ

Figure: Forces acting on a body

So we have |R| ≈ 9.4N, and for the direction this can be calcu-
lated using

tan θ =
|F2|
|F1|

=
8
5

= 1.6

and hence θ =58°.
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• Given a vector a and a scalar k, ka is a vector having the
same direction as a but k times it’s magnitude

• Also −1× a = −a has the same magnitude as a but
opposite direction

a

1
2a

Figure: Scalar Multiplication

a

−a

Figure: Scalar Multiplication
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Two points A and B have position vectors ( i.e. relative to a
fixed origin O) a and b respectively. What is the position
vector of a point on the line joining A and B, equidistant from
A and B.

Solution

A

B

O

a b

X

x

First we note that
−−→
AB = b− a

x = a +
−−→
AX = a +

1
2
−−→
AB

= a +
1
2
(b− a)

=
1
2
(a + b).
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Example

Prove that the lines joining the mid-points of a general
quadrilateral form a parallelogram.
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Solution

A

D

B

C

E
F

GH

a b

c

d

First let

a =
−−→
AB, b =

−−→
BC,

c =
−−→
CD, d =

−−→
DA

and it then follows that

a + b + c + d = 0. (24)

Also let E,F, G,H be the mid-
points of the sides.
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Solution

A

D

B

C

E
F

GH

a b

c

d

Now

−−→
HE =

−−→
HA +

−→
AE

=
1
2
d +

1
2
a,

−−→
GF =

−−→
GC +

−−→
CF

= −1
2
c− 1

2
b,

= −1
2
(c + b)

=
1
2
(a + d) =

−−→
HE

last part obtained using (24)
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Solution

A

D

B

C

E
F

GH

a b

c

d

We can also show that

−−→
EF =

−−→
EB +

−−→
EF

=
1
2
(a + b),

−−→
HG =

−−→
HD +

−−→
DG

=
1
2
(a + a)

=
−−→
EF

Hence EFGH is a parallelo-
gram, since opposite sides are
parallel and have the same
length.

298 / 435



Introduction
to Vectors

The Vector
Scalar Product

The Vector
Cross Product

Vectors
Unit Vectors

• Any vector with magnitude 1 is called a unit vector, and is
represented using the hat (ˆ) symbol, for example p̂.

• In general if a is a vector with magnitude |a| then

â =
a
|a|

since

|a| =
∣∣∣∣ a
|a|

∣∣∣∣ = |a||a| = 1.
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Example

Prove that the line that passes through one vertex of a
parallelogram and the mid-point of the opposite side divides
one of the diagonals in the ratio 1:2
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Solution

A D

B C

I

u

vx

y

a a

b

b

E

dc

Let E be the mid-point of BC.

Let
−→
AE = c and

−−→
BD = d.

Let I be the point of in-
tersection.∣∣∣−→BI

∣∣∣ = x,
∣∣∣−→ID

∣∣∣ = y,∣∣∣−→AI
∣∣∣ = u,

∣∣∣−→IE
∣∣∣ = v.

Then
−→
BI = xd̂,

−→
ID = yd̂,

−→
AI = uĉ,

−→
IE = vĉ. where that hats

denote unit vectors.
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Solution

A D

B C

I

u

vx

y

a a

b

b

E

dc

The aim is to show that
2x = y.

4ABD : a + d = b

4ABE : a +
1
2
b = c

4AID : uĉ + yd̂ = b

4ABI : uĉ = a + xd̂.

Dividing the third by 2 and adding to the forth gives

3
2
uĉ +

y

2
d̂ =

1
2
b + a + xd̂ = c + xd̂.
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Solution

A D

B C

I

u

vx

y

a a

b

b

E

dc

But since c = (u + v)ĉ this
gives(

1
2
u− v

)
ĉ =

(
x− 1

2
y

)
d̂

and c is not parallel to d, this
can only be true if

x− 1
2
y = 0 and

1
2
u−v = 0.

Therefore
2x = y.

as required.
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• Consider any three non-parallel vectors in 3D, a,b and c
which form a reference system with origin O.

• Then the position vector r of point P (i.e. r =
−−→
OP ) is

r = a + b + c.

a
b

c

O A

S

C

B

P

R

Q
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• Consider any three non-parallel vectors in 3D, a,b and c
which form a reference system with origin O.

• Then the position vector r of point P (i.e. r =
−−→
OP ) is

r = a + b + c.

a
b

c

O A

S

C

B

P

R

Q
• OABCPQRS is a parallelepiped.

• We the let

a = xâ, b = xb̂, c = xĉ

where the hats denote unit
vectors.
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Hence we have
r = xâ + yb̂ + zĉ

i.e. x, y and z are components of r in the reference frame
a,b, c.

a
b

c

O A

S

C

B

P

R

Q
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Let P1 and P2 be two point such that

r1 = x1â + y1b̂ + z1ĉ

r2 = x2â + y2b̂ + z2ĉ

then r1 = r2 only when x1 = x2, y1 = y2, z1 = z2.

Similarly, if
r3 = x3â + y3b̂ + z3ĉ

such that r3 = r1 + r2 then

x3â + y3b̂ + z3ĉ = (x1â + y1b̂ + z1ĉ) + (x2â + y2b̂ + z2ĉ).
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r1 = x1â + y1b̂ + z1ĉ
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then r1 = r2 only when x1 = x2, y1 = y2, z1 = z2.

Similarly, if
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Hence we have

x3 = x1 + x2

y3 = y1 + y2

z3 = z1 + z2.

Vectors may therefore be added by adding their respective
components.
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Cartesian Coordinates

z

y

x

jk

i

P (x, y, z)
• Unit vectors in the x, y

and z directions are i, j
and k respectively.

• A point P has position
vector r from the origin
given by

r = xi + yj + zk.
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Example

If

a = 6i− 3j + k

b = 4i + 2j

then

a + b = 10i− j− k

b− a = −2i + 5j− k

3a = 18i− 9j + 3k

etc.
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z

y

x

jk

i

P (x, y, z)

√
x 2+

y 2

r

Let |r| = l, then

r = xi + yj + zk

l2 = z2 + (
√

x2 + y2)2

= x2 + y2 + z2.

Therefore we have

l = |r| =
√

x2 + y2 + z2.

Hence

|a| =
√

62 + (−3)2 + 12 =
√

46

|b| =
√

42 + 22 + 02 =
√

20 = 2
√

5.
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z

y

x

jk
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√
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y 2

r
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The Dot Product (also known as the Scalar Product or Inner Product)

θ

b

a

The dot product of two vectors is
written a.b and is defined as

a.b = |a||b| cos θ

where 0 ≤ θ < π is the angle
between a and b.

Note that the dot product is a
scalar quantity.
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The Dot Product: Perpendicular Vectors

Two non-zero vectors are perpendicular (orthogonal) if and
only if their dot product is zero. i.e if

a.b = 0 ⇒ |a||b| cos θ = 0
⇒ cos θ = 0

⇒ θ =
π

2
.

Note that

a.a = |a||a| cos 0 = |a|2

i.e |a| =
√

a.a, which is a good what to find the length of a
vector.
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The Dot Product: Properties of the Dot Product

• We have the property of linearity

(αa + βb) .c = αa.c + βb.c

• We have the property of symmetry

a.b = b.a

• and we have the property of Positive Definiteness

a.a ≥ 0 with a.a = 0 ⇐⇒ a = 0
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Let the vectors a and b be given by

a = a1i + a2j + a3k

b = b1i + b2j + b3k

Now
i.i = |i||i| cos 0 = 1

and similarly j.j = k.k = 1.
We also have

i.j = j.i = 0, i.k = k.i = 0, j.k = k.j = 0

since θ = π
2 .
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Thus a.b = (a1i + a2j + a3k).(b1i + b2j + b3k)

= a1i.(b1i + b2j + b3k)
+ a2j.(b1i + b2j + b3k)
+ a3k.(b1i + b2j + b3k)

= a1b1 + 0 + 0
+ 0 + a2b2 + 0
+ 0 + 0 + a3b3.

Which leads to the result

a.b = a1b1 + a2b2 + a3c3.
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Example

For the vectors

a = 6i− 3j + k

b = 4i + 2j.

calculate a.b and find the angle between the two vectors.

Solution

Using
a.b = a1b1 + a2b2 + a3c3.

we have

a.b = 6× 4 + (−3)× 2 + 1× (0) = 18.
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Solution continued

Then recall that
a.b = |a||b| cos θ

and since |a| =
√

46 and |b| = 2
√

5 (calculated earlier) then

cos θ =
a.b
|a||b|

=
18

2
√

5
√

46
= 0.593.

Therefore we have θ = arccos (0.593) = 53.6°.
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Example

Using vectors, show that if the diagonals of a rectangle are
perpendicular, then the rectangle must be a square.
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Solution

A B

D C

c

b

a
d

b

a

Note that

c = a + b, d = b− a.

Now if the diagonals are
perpendicular then c.d = 0,
i.e.

(a + b).(b− a) = 0

And expanding the brackets gives

©©a.b + |b|2 −©©a.b− |a|2 = 0

i.e. |b|2 = |a|2, ⇒ |b| = |a|

i.e. the rectangle is a square.
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Example

Point A, B and C have coordinates (3, 2), (4,−3), (7,−5)
respectively.

i Find
−−→
AB and

−→
AC

ii Find
−−→
AB.
−→
AC

iii Deduce the angle between
−−→
AB and

−→
AC.

Solution

i Calculate
−−→
AB and

−→
AC

−−→
AB = (4i− 3j)− (3i + 2j) = i− 5j
−→
AC = (7i− 5j)− (3i + 2j) = 4i− 7j
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Solution (..continued)

ii Then calculate the dot product

−−→
AB.
−→
AC = 4× 1 + (−5)× (−7) = 4 + 35 = 39.

iii Now we calculate the angle: Note that

|
−−→
AB| =

√
12 + (−5)2 =

√
26,

|
−→
AC| =

√
42 + (−7)2 =

√
65.

Then we have

cos θ =
−−→
AB.
−→
AC

|
−−→
AB||

−→
AC|

=
39√

26
√

65
= 0.949

Hence θ = 18°.
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The Vector Cross Product

The cross product between two vectors is written as

a× b (or sometimes a ∧ b).

Definition

If a and b have the same or opposite direction, or one of these
vectors is zero, then

v = a× b = 0.

Otherwise v = a×b is the vector with length equal to the area
of the parallelogram with a and b as adjacent sides and whose
direction is perpendicular to both a and b such that a,b,v (in
that order) form a right handed triad.
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a

b

v

θ

Figure: Graphical Representation of the cross product v = a× b

.

• The sides a and b form a parallelogram, as shown in the
picture.

• Note that a× b is always a vector quantity.
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The Vector Cross Product:

The right hand rule: a is rotated towards b through and angle
< π, then b is in the direction of the thumb.

If θ is the angle between a and b, then the area A of the
parallelogram with sides a and b is

A = |a||b| sin θ.
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|a| |a|

|b|

|b|
θ

|a| sin θ

|a| cos θ

θ

A1

A2

Figure: Area of a Parallelogram

.

A = 2A1 +A2

= 2× 1
2
|a|2 sin θ cos θ

+ |a| sin θ (|b| − |a| cos θ)
= |a||b| sin θ

= |a× b|.

Thus
|v| = |a× b| = |a||b| sin θ.
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a

b

a× b

b× a

Figure: The Vector
Product

.

i Let

a× b = v, and b× a = w

Then by definition |v| = |w|, but
v = −w by the right hand rule. i.e.

b× a 6= a× b !!
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Properties of the Vector Cross Product:

ii Note that for a scalar λ

(λa)× b = λ(a× b) = a× (λb)
a× (b + c) = (a× b) + (a× c)
(a + b)× c = (a× c) + (b× c)

However note the unusual property

a× (b× c) 6= (a× b)× c !!

To demonstrate, first note that i× j = k, thus

i× (i× j) = i× k = −j

but (i× i)× j = 0× j = 0 6= −j.
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(λa)× b = λ(a× b) = a× (λb)
a× (b + c) = (a× b) + (a× c)
(a + b)× c = (a× c) + (b× c)

However note the unusual property

a× (b× c) 6= (a× b)× c !!
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Moment of a Force

The moment of a force F about a point O is

m = |F|d

where d is the perpendicular distance between O and the line
of action of F.

d

O

θ θ

r F d = |r| sin θ

⇒ m = |r||F| sin θ

= |r× F|.

The vector m = r×F is the moment vector of F about O, i.e.
direction of m is given by the right hand rule.
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Cross Product in Terms of Cartesian Components

Suppose we have vectors a and b such that

a = a1i + a2j + a3k

b = b1i + b2j + b3k

We can show that in cartesian coordinates

a× b = (a2b3 − a3b2)i + (a3b1 − a1b3)j + (a1b2 − a2b1)k

326 / 435



Introduction
to Vectors

The Vector
Scalar Product

The Vector
Cross Product

Vectors
Cross Product in Terms of Cartesian Components

A convenient representation is that of a 3× 3 determinant

a× b =

∣∣∣∣∣∣
i j k
a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣
i.e

a× b = i
∣∣∣∣ a2 a3

b2 b3

∣∣∣∣− j
∣∣∣∣ a1 a3

b1 b3

∣∣∣∣+ k
∣∣∣∣ a1 a2

b1 b2

∣∣∣∣
where we recall that for a 2× 2 determinant∣∣∣∣ a b

c d

∣∣∣∣ = ad− bc.
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Example

Compute a× b, where

a = 4i− k

b = −2i + j + 3k

Solution

a× b =

∣∣∣∣∣∣
i j k
4 0 −1
−2 1 3

∣∣∣∣∣∣
= (0.3− (−1).1)i− (4.3− (−1).(−2))j + (4.1− (−2).0)k
= i− 10j + 4k.
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Example

Show that i× j = k

Solution

i× j =

∣∣∣∣∣∣
i j k
1 0 0
0 1 0

∣∣∣∣∣∣
i× j = (0.0− 1.0) i− (1.0− 0.0) j + (1.1− 0.0)k = k
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Example

Find the area of the triangle with adjacent sides given by

a = i + 2j− k

b = j + k.

Solution

a× b =

∣∣∣∣∣∣
i j k
1 2 −1
0 1 1

∣∣∣∣∣∣ = 3i− j + k.

∴ |a× b| =
√

9 + 1 + 1 =
√

11 = Area of parallelogram.

A4 =
1
2
|a× b| = 1

2

√
11.
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The Scalar Triple Product

Definition

The scalar triple product between three vectors a,b and c is

a. (b× c)

which is a scalar quantity.

Note that it is a 3× 3 determinant, i.e.

a. (b× c) = (a1i + a2j + a3k).

∣∣∣∣∣∣
i j k
b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣
=

∣∣∣∣∣∣
a1 a2 a3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣ .
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The Scalar Triple Product

Since interchanging two rows in a determinant changes it’s
sign, we have

b. (a× c) = − [a. (b× c)]

etc. Also if we interchange twice we have

a. (b× c) = b. (c× a) = c. (a× b) .
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The absolute value of a. (b× c) is the volume of a
parallelepiped with a,b and c as adjacent edges.

a
b

c

O A

S

C

B

P

R

Q
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The Vector Triple Product

Definition

The vector triple product is defined as

b× (c× d).

Note that it is possible to show that

b× (c× d) = (b.d)c− (b.c)d.
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The Vector Triple Product

Also note

a× (b× a) = (a.a)b− (a.b)a

= |a|2b− (a.b)a.

and therefore

b =
(a.b)a
|a|2

+
a× (b× a)
|a|2

i.e. b has been resolved into two component vectors, one
parallel to a (i.e. (a.b)a/|a|2) and one perpendicular to a (i.e.
a× (b× a)/|a|2).
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The Vector Triple Product: Lagrange Identity

Take the dot product with a

a. [b× (c× d)]︸ ︷︷ ︸
Triple Scalar Product

= (b.d)a.c− (b.c)a.d

i.e.
(a× b).(c× d) = (b.d)a.c− (b.c)a.d.

which is the identity of Lagrange.

336 / 435



Introduction
to Numerical
Integration

The
Rectangular
Rule

The
Trapezoidal
Rule

Simpson’s
Rule

Newton’s
Method for
Root Finding

Numerical Methods: Outline of Topics

23 Introduction to Numerical Integration

24 The Rectangular Rule

25 The Trapezoidal Rule

26 Simpson’s Rule

27 Newton’s Method for Root Finding
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Introduction to Numerical Integration

In many case the integral

I =
∫ b

a
f(x)dx

can be found by finding a function F (x) such that
F ′(x) = f(x), and also

I =
∫ b

a
f(x)dx = F (b)− F (a)

which is known as the analytical (or exact) solution.
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Numerical Integration

Consider ∫ 1

0

√
1 + x3dx, and

∫ 1

0
ex2

dx.

• Neither of the above integrals can be expressed in terms of
functions that we know.

• However both of these integrals exist, as they both
represent the area below the curves

√
1 + x3 and ex2

between x = 0 and x = 1.

• In many engineering applications many such integrals
occur. Therefore we use a numerical method to evaluate
the integral.
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Numerical Methods
Numerical Integration: Rectangular Rule

The Rectangular Rule:

• The interval of integration is divided into n equal
subintervals of length h = (b− a)/n, and we approximate
f in each subinterval by f(x∗j ), where x∗j is the midpoint
of the interval

bx∗2
...

x∗n
aa x∗1

y

x
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The Rectangular Rule:
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Numerical Methods
Numerical Integration: Rectangular Rule

• Each rectangle has area f(x1∗)h, f(x2∗)h, . . . , f(xn∗)h
• Therefore we can say that

I =
∫ b

a
f(x)dx ≈ h [f(x1∗) + f(x2∗) + · · ·+ f(xn∗)]

where h = (b− a)/n

• The approximation on the RHS becomes more accurate
the more rectangles that are used. In fact∫ b

a
f(x)dx = lim

h→0
{h [f(x1∗) + f(x2∗) + · · ·+ f(xn∗)]}

(where we note that as h→ 0, n→∞, i.e. hn = b− a
with b− a fixed.
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Numerical Integration: Rectangular Rule
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Numerical Integration: Rectangular Rule
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Numerical Methods
Numerical Integration: Trapezoidal (or Trapezium) Rule

The Trapezoidal Rule

• Here the interval a ≤ x ≤ b is divided into n equal
subintervals, i.e.

a < x1 < x2 < . . . < xn−1 < b

each with length h = (b− a)/n.

y

xaa bx1 x2
... xn−1

• The figure shows
that the area
under the curve
can be
approximated by
the sum of n
trapezoids.

342 / 435



Introduction
to Numerical
Integration

The
Rectangular
Rule

The
Trapezoidal
Rule

Simpson’s
Rule

Newton’s
Method for
Root Finding

Numerical Methods
Numerical Integration: Trapezoidal (or Trapezium) Rule

f(x1)

f(a)

h

Area of first Trapezoid = A1 = area
of rectangle + area of triangle, i.e.

A1 = f(a)h +
1
2
(f(x1)− f(a))

=
1
2
h [f(a) + f(x1)] .

Area of next Trapezoid = A2 is

A2 =
1
2
h [f(x1) + f(x2)]

...

Area of next to last trapezoid =
1
2
h [f(xn−2) + f(xn−1)]

Area of last trapezoid =
1
2
h [f(xn−1) + f(b)]
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Numerical Methods
Numerical Integration: Trapezoidal (or Trapezium) Rule

I =
∫ b

a
f(x)dx ≈ Sum of all Trapezoids

1
2
h {f(a) + f(x1) + f(x1) + f(x2) + f(x2) + · · ·

· · · +f(xn−2) + f(xn−2) + f(xn−1) + f(xn−1) + f(b)}

i.e.

I ≈ h

2
{f(a) + f(b) + 2 [f(x1) + f(x2) + · · ·+ f(xn−1)]} .

where

h = (b− a)/n xi = a + ih, 1 ≤ i ≤ n− 1.
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Numerical Methods
Numerical Integration: Example Using the Trapezoidal Rule

Example

Estimate

I =
∫ 2

1

dx

x

using the trapezoidal rule with n = 5.

Solution

y = 1
x

y

x1 2

Note that we have
b = 2, a = 1 and n = 5.
Therefore

h =
b− a

n
=

2− 1
5

=
1
5

= 0.2.
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Numerical Methods
Numerical Integration: Example Using the Trapezoidal Rule

Solution (..continued)

a = 1, x1 = 1.2, x2 = 1.4, x3 = 1.6, x4 = 1.8, b = 2.

Then

I ≈ 0.2
2

[f(a) + f(b) + 2 (f(x1) + f(x2) + f(x3) + f(x4))]

= 0.1 [f(1) + f(2) + 2 (f(1.2) + f(1.4) + f(1.6) + f(1.8))]

= 0.1
[
1
1

+
1
2

+ 2
(

1
1.2

+
1

1.4
+

1
1.6

+
1

1.8

)]
≈ 0.6956 To 4 d.p
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Numerical Methods
Numerical Integration: Comments on the Last Example

• Note that in the last example the analytical value is given
by∫ 2

1

1
x

dx = [lnx]21 = ln 2− ln 1 = ln 2 = 0.6931 To 4.d.p.

• Also note that if we were to use n = 10 then we would get

I ≈ 0.6938

i.e. better accuracy.
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Numerical Methods
Numerical Integration: Error in Using the Trapezoidal Rule

• Let Î be the trapezoidal approximation to I , then we
define the error εT as

εT = Î −I ,

(where we do not mean ε to the power T ).

• It is possible to show that if∣∣f ′′(x)
∣∣ ≤M ∀x ∈ [a, b]

then

|εT | ≤M
(b− a)3

12n2
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Numerical Methods
Numerical Integration: Error in Using the Trapezoidal Rule Example

Example

What is the smallest n such that

I =
∫ 2

0
ex2

dx

has a maximum error of 1?

Solution

We must choose n large enough such that |εT | ≤ 1. Note that

f(x) = ex2
=⇒ f ′′(x) =

[
2 + 4x2

]
ex2
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Numerical Methods
Numerical Integration: Error in Using the Trapezoidal Rule Example

Solution (..continued)

From 0 ≤ x ≤ 2 the maximum value of f ′′(x) occurs when
x = 2, and thus M = f ′′(2) ≈ 983 (rounded up).

Therefore we have

|εT | ≤M
(b− a)3

12n2
≤ 983

23

12n2
≈ 655

n2

i.e we require
655
n2
≤ 1 or n2 ≥ 655

and the smallest such n that satisfies this is n = 26.
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Numerical Methods
Numerical Integration: Simpson’s Rule

Simpson’s Rule

Simpson’s rule is another method of numerical integration. It is
credited to Thomas Simpson (1710-1761), an English
mathematician, though there is evidence that similar methods
were used 100 years prior to him.

So far we have looked at two methods for numerical integration

• Piecewise constant approximation =⇒ Rectangular Rule

• Piecewise linear approximation =⇒ Trapezoidal Rule

• Piecewise quadratic approximation =⇒ Simpson’s Rule
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Numerical Methods
Numerical Integration: Simpson’s Rule

• For Simpson’s rule we divide a ≤ x ≤ b into an even
number of subintervals 2n of length h = (b− a)/2n with
endpoints a = x0, x1, x2, . . . , x2n−2, x2n−1, b = x2n

• Three points describe a parabola: ax2 + bx + c

y

xaa bx1x2

P1

P2

x3x4

Pn

352 / 435



Introduction
to Numerical
Integration

The
Rectangular
Rule

The
Trapezoidal
Rule

Simpson’s
Rule

Newton’s
Method for
Root Finding

Numerical Methods
Numerical Integration: Derivation of Simpson’s Rule

Please note that the following derivation is for your interest
only and is not examinable. However you should ensure that
you learn the result.

For x0 ≤ x ≤ x2 = x0 + 2h it is possible to show that

P1(x) =
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)︸ ︷︷ ︸
2h2

f0 +
(x− x0)(x− x2)

(x1 − x0)(x1 − x2)︸ ︷︷ ︸
−h2

f1

+
(x− x0)(x− x1)

(x2 − x0)(x2 − x1)︸ ︷︷ ︸
2h2

f2.
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Numerical Integration: Derivation of Simpson’s Rule

Let s = (x− x1)/h, then

x− x0 = x− x1 + x1 − x0 = hs + h = h(s + 1)
x− x1 = sh

x− x2 = (x− x1) + (x1 − x2) = sh− s = (s− 1)h.

then

P1 =
1
2
s(s− 1)f0 − (s + 1)(s− 1)f1 +

1
2
(s + 1)sf2
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Numerical Integration: Derivation of Simpson’s Rule

∫ x2

x0

f(x)dx ≈
∫ x2

x0

P1(x)dx =
∫ 1

−1
P1(s)hds

where we have used dx = hds,x = x0 ⇒ s = −1, and
x = x2 ⇒ s = 1.

Hence we have∫ 1

−1
P1(s)hds =

f0h

2

[
s3

3
− s2

2

]1

−1

− f1h

[
s3

3
− s

]1

−1

+
f2h

2

[
s3

3
+

s2

2

]1

−1

=
f0h

3
+

4
3
f1h +

f2h

3

=
h

3
[f0 + 4f1 + f2] .
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Numerical Integration: Derivation of Simpson’s Rule

A similar formula holds for x2 ≤ x ≤ x4 etc. Hence we have
Simpson’s formula∫ b

a
f(x)dx ≈ h

3

[
f0 + f2n + 4 (f1 + f3 + · · ·+ f2n−3 + f2n−1)

+ 2 (f2 + f4 + · · ·+ f2n−2)
]

where

h =
b− a

2n
, and fj = f(xj).
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Numerical Integration: Simpson’s Rule Algorithm

A good way of computing a numerical integral using Simpson’s
rule is to use the following algorithm.

Given function values fj = f(xj) at xj = a + jh for
j = 0, 1, . . . , 2n, where h = (b− a)/2 Compute

S0 = f0 + f2n

S1 = f1 + f3 + · · ·+ f2n−1

S2 = f2 + f4 + · · ·+ f2n−2

then

Î =
h

3
(S0 + 4S1 + 2S2) .
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Numerical Integration: Error Using Simpson’s Rule

It can be shown for Simpson’s rule that if

|f (4)(x)| ≤M ∀x ∈ [a, b]

then

|εS | ≤ M(b− a)5

2880n4
.
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Numerical Integration: Example Using Simpson’s Rule

Example

Evaluate

I =
∫ 2

1

1
x

dx

using Simpson’s rule with 2n = 10, a = 1, b = 2,.

Solution

y = 1
x

y

x1 2

Note that we have
b = 2, a = 1 and 2n = 10.
Therefore

h =
b− a

2n
=

2− 1
10

= 0.1.
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Numerical Integration: Example Using Simpson’s Rule

Solution (..continued)

j xj f(xj) = 1/xj

0 1.0 1.000000
1 1.1 0.909091
2 1.2 0.833333
3 1.3 0.769213
4 1.4 0.714286
5 1.5 0.666666
6 1.6 0.625000
7 1.7 0.588235
8 1.8 0.555555
9 1.9 0.526316
10 2.0 0.500000

Sums 1.5000000 3.459539 2.728174
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Numerical Integration: Example Using Simpson’s Rule

Solution (..Continued)

i.e.

S0 = 1.500000
S1 = 3.459539
S2 = 2.728174

Therefore we have

Î =
h

3
(S0 + 4S1 + 2S2) = 0.693150.

Note from earlier that

I =
∫ 2

1

dx

x
= ln 2 = 0.69314718
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Newton’s Method for Root Finding

• In engineering often it is required to find x such that

f(x) = 0. (24)

For example

1 x2 − 3x + 2 = 0 (easy)
2 sin x = 1

2x
3 cosh x cos x = −1

• Note that all of the above equations can be written in the
form (24).
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Numerical Methods
Root Finding: Newton’s Method

x0x1x2
β

x

y

y = f(x)

Let an initial guess to the root
be x0. Then x1 is the point of
intersection of x axis and the
tangent to the curve f at x0.

tan β = f ′(x0) =
f(x0)

x0 − x1

i.e.

x1 = x0 −
f(x0)
f ′(x0)
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Numerical Methods
Root Finding: Newton’s Method

x0x1x2
β

x

y

y = f(x)

Let an initial guess to the root
be x0. Then x1 is the point of
intersection of x axis and the
tangent to the curve f at x0.

tan β = f ′(x0) =
f(x0)

x0 − x1

i.e.

x1 = x0 −
f(x0)
f ′(x0)

For the next iteration

x2 = x1 −
f(x1)
f ′(x1)
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Numerical Methods
Root Finding: Newton’s Method

x0x1x2
β

x

y

y = f(x)

Let an initial guess to the root
be x0. Then x1 is the point of
intersection of x axis and the
tangent to the curve f at x0.

tan β = f ′(x0) =
f(x0)

x0 − x1

i.e.

x1 = x0 −
f(x0)
f ′(x0)

And then for the next iteration

x3 = x2 −
f(x2)
f ′(x2)
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Numerical Methods
Root Finding: Newton’s Method

x0x1x2
β

x

y

y = f(x)

Let an initial guess to the root
be x0. Then x1 is the point of
intersection of x axis and the
tangent to the curve f at x0.

tan β = f ′(x0) =
f(x0)

x0 − x1

i.e.

x1 = x0 −
f(x0)
f ′(x0)

i.e. Just keep iterating until we get the desired accuracy

xn+1 = xn −
f(xn)
f ′(xn)
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Root Finding: Example Using Newton’s Method

Example

Find the positive solution of

2 sinx = x
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Numerical Methods
Root Finding: Example Using Newton’s Method

Solution

x

y

y = x

y = 2 sin x

π
2

3π
2

π 2π

First let’s draw a sketch.

The solution we are
trying to find is the
positive x value of the
point of intersection,
shown in the picture.
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Solution (Continued..)

We write

f(x) = x− 2 sinx (i.e. We want f(x) = 0)

=⇒ f ′(x) = 1− 2 cosx.

Newton’s method gives

xn+1 = xn −
xn − 2 sinxn

1− 2 cosxn

=
2(sin xn − xn cos xn)

1− 2 cosxn
=

Nn

Dn
.
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Solution (Continued..)

We write

f(x) = x− 2 sinx (i.e. We want f(x) = 0)

=⇒ f ′(x) = 1− 2 cosx.

Newton’s method gives

xn+1 = xn −
xn − 2 sinxn

1− 2 cosxn

=
2(sin xn − xn cos xn)
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=

Nn
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.
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Root Finding: Example Using Newton’s Method

Solution (Continued..)

Start off with an initial guess, say x0 = 2.

n xn Nn Dn xn+1 = Nn/Dn

0 2.00 3.483 1.832 1.901
1 1.901 3.125 1.648 1.896
2 1.896 3.107 1.639 1.896

The actual solution to 4 d.p is 1.8955.
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28 Basic Probability

29 Introduction to Random Variables

30 The Binomial Distribution

31 The Poisson Distribution

32 Statistical Regression
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Probability and Statistics
Introduction to Basic Ideas

For an event E, the probability of the event E occurring,
denoted P(E), is a number such that

0 ≤ P(E) ≤ 1.

where

P(E) = 0 =⇒ E is impossible,

P(E) = 1 =⇒ E is certain.
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Probability and Statistics
Example involving the rolling of a die

Example (Rolling a die)

The set of possible outcomes is the sample space, denoted S,
i.e.

S = {1, 2, 3, 4, 5, 6}

Let A be the event of getting an even number in one roll, so

A = {2, 4, 6}

and therefore

P(A) =
3
6

=
1
2
.
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Example Involving Determining the Number of Defective Gaskets

Example

We randomly select 2 gaskets from a set of 5 gaskets
(numbered 1 to 5). The sample space consists of 10 possible
outcomes

S = {{1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3},
{2, 4}, {2, 5}, {3, 4}, {3, 5}, {4, 5}} ,

and note that |S| = 10 is the number of elements in S, also
known as the cardinality of the set S.

We may be interested
in the following events

A: No defective gasket

B: One defective gasket

C: Two defective gaskets
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Example Involving Determining the Number of Defective Gaskets
(continued...)

Example (...continued)

Assuming that 3 gaskets, say 1,2,3 are defective, we see that

Event A occurs if we draw {4, 5} and therefore

P (A) =
1
10

.

Event B occurs if we draw {1, 4} , {1, 5} , {2, 4} , {2, 5} , {3, 4}
or {3, 5} and therefore

P (B) =
6
10

.

Event C occurs if we draw {1, 2} , {1, 3} , {2, 3}, and therefore

P (C) =
3
10
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Introducing the Event Compliment

Definition

The set of all elements (outcomes) not in E in the sample
space S is called the compliment of E, usually denoted Ec or
Ē.

Example

E : randomly rolled die gives an even number, i.e.

E = {2, 4, 6}

then Ec : randomly rolled die gives an odd number, i.e.

Ec = {1, 3, 5}
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The Union of Two Events

Let A and B be two events in an experiment.

Definition: Union of Two Events

The event consisting of all the elements of the sample space
that belong to either A or B is called the union of A and B
and is denoted

A ∪B

A ∪B
S

A B

Figure: A Vector
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The Intersection of Two Events

Definition: Intersection of Two Events

The event consisting of all the elements of the sample space
that belong to either A and B is called the intersection of A
and B and is denoted

A ∩B

A ∩B
S

A B

Figure: A Vector
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Probability and Statistics
The Intersection of Two Events

Definition: Intersection of Two Events

The event consisting of all the elements of the sample space
that belong to either A and B is called the intersection of A
and B and is denoted

A ∩B

A ∩B
S

A B

Figure: A Vector
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The Union and Intersection of Two Events: Pictorially using Venn diagrams

Venn diagrams to go here
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The Union and Intersection of Two Events: Example

Example

Suppose that we are rolling a die, then consider the following
events

A: The die gives a number not smaller than 4.

B: The die gives a number that is divisible by 3

A = {4, 5, 6} , B = {3, 6}

then
A ∪B = {3, 4, 5, 6} , A ∩B = {6}
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Definition: Mutually exclusive events

Events A and B are said to be mutually exclusive events if
they have no element in common, i.e. if

A ∪B = {} = ∅,

where the symbol ∅ denotes the empty set.
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Probability and Statistics
The Axioms of Probability

1 If E is any event in a sample space S, then

0 ≤ P (E) ≤ 1.

2 To the entire sample space S there corresponds

P (S) = 1.

3 If A and B are mutually exclusive events, then

P(A ∪B) = P(A) + P(B).
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Consequences of the Axions of Probability

Fact: Direct Consequence of Axiom 3

If E1, E2, . . . , En are mutually exclusive events, then

P(E1 ∪ E2 ∪ . . . ∪ En) = P(E1) + P(E2) + · · ·+ P(En)

=
n∑

i=1

P(Ei).

Fact

If A and B are any events, then

P(A ∪B) = P(A) + P(B)− P(A ∩B)
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Consequences of the Axions of Probability

Fact: Event Compliments

P(E) = 1− P(Ec).

i.e. the probability of E occurring is 1− the probability of E
not occurring.
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Example

Rolling a die one has the event space

S = {1, 2, 3, 4, 5, 6}

with P(1) = 1/6, P(2) = 1/6, . . . etc.

A: The event that an even number is given

P(A) = P(2) + P(4) + P(6) =
1
2
.

B: The event that a number greater than 4 turns up

P(B) = P(5) + P(6) =
1
3
.
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Example

Question: Five coins are tossed simultaneously. What is the
probability of obtaining at least one head?

Note that there are in total 25 = 32 possible outcomes, and
only one of these has no heads. Therefore

P(At Least One Head) = 1− P(No Heads)

= 1− 1
32

=
31
32

.
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only one of these has no heads. Therefore

P(At Least One Head) = 1− P(No Heads)

= 1− 1
32

=
31
32

.
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Example

Question: The probability that a person watches TV
P(T ) = 0.6; The probability that the same person listens to the
radio P(R) = 0.3; The probability that they do both is 0.15.
What is the probability that they do neither?

Using the addition law

P(T ∪R) = P(T ) + P(R)− P(T ∩R)
= 0.6 + 0.3− 0.15 = 0.75

and therefore

P(They do neither) = 1− P(T ∪R) = 0.25.
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• Often it is required to find the probability of an event B
given that an event A occurs.

• This is known as the conditional probability of B given A,
and is denoted P(B|A).

• A gives a reduced sample space, and therefore

P(B|A) =
P(A ∩B)

P(A)
,

for P(A) 6= 0.

385 / 435



Basic
Probability

Introduction
to Random
Variables

The Binomial
Distribution

The Poisson
Distribution

Statistical
Regression

Probability and Statistics
Conditional Probability

• Often it is required to find the probability of an event B
given that an event A occurs.

• This is known as the conditional probability of B given A,
and is denoted P(B|A).

• A gives a reduced sample space, and therefore

P(B|A) =
P(A ∩B)

P(A)
,

for P(A) 6= 0.

385 / 435



Basic
Probability

Introduction
to Random
Variables

The Binomial
Distribution

The Poisson
Distribution

Statistical
Regression

Probability and Statistics
Conditional Probability

• Often it is required to find the probability of an event B
given that an event A occurs.

• This is known as the conditional probability of B given A,
and is denoted P(B|A).

• A gives a reduced sample space, and therefore

P(B|A) =
P(A ∩B)

P(A)
,

for P(A) 6= 0.

385 / 435



Basic
Probability

Introduction
to Random
Variables

The Binomial
Distribution

The Poisson
Distribution

Statistical
Regression

Probability and Statistics
Conditional Probability

Example (Conditional Probability)

Question: The probability P(A) that it rains in Manchester on
July 15th is 0.6. The probability P(A ∩B) that it rains there
on both the 15th and 16th is 0.35. Given that it rains on the
15th, what is the probability that it rains the next day?

We are required to find P(B|A), and using the formula for
conditional probability

P(B|A) =
P A ∩B

P(A)
=

0.35
0.6

=
7
12

= 0.583 (3 d.p)
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Example

Question: A fridge contains 10 cans of larger, three of which
are “4X” (to be avoided). Find the probability that if 2 cans are
selected at random that none of the selected cans are “4X”.

Let A = First can selected is not a 4X,

B = Second can selected is not a 4X.

i First we consider the case with replacement: It is clear that

P(A) =
3
10

, P(B) =
3
10

∴ P(A ∩B) =
7
10
× 7

10
= 0.49.
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Example (...continued)

ii Now we consider the case where the cans are not replaced.
Then we have

P(A) =
7
10

, P(B|A) =
6
9

=
2
3
.

∴ P(A ∩B) = P(A) P(B|A)

=
7
10
× 6

9
=

14
30
≈ 0.47.
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Introduction to Random Variables

A random variable X is a variable whose (real) value results
from the measurement of some random process.

Suppose an experiment is done and an event corresponding to
a number a occurs, i.e. the random variable X has taken the
value a, meaning

X = a with probability P(X = a).
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Introduction to Random Variables

1 The probability that X assumes any value a < X < b is
P(a < X < b)

2 The probability that X ≤ c is denoted P(X ≤ c)
3 The probability that X > c is denoted P(X > c)

Also please note that

P(X ≤ c) + P(X > c) = P(−∞ < X <∞) = P(S) = 1.

or equivalently

P(X > c) = 1− P(X ≤ c).
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Example

Let the random variable X be defined as

X = Score obtained on the random throw of a fair die.

Then we have

P(X = 1) =
1
6
, P(1 ≤ X ≤ 2) =

1
2

P(1 < X < 2) = 0, P(X < 0.5) = 0.

Random variables may be discrete (such as in the example
above) or continuous. In this course we only consider discrete
random variables.
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Discrete Random Variables

For a discrete random variable X

1 The number of values for which X has a probability
different from zero is finite or countably infinite.

2 If the interval a < X < b does not contain such a value,
then P(a < X < b) = 0.

Definition

Let x1, x2, . . . be the values of X which have probabilities
P1, P2, . . ., then the probability distribution function
(sometimes abbreviated p.d.f) f(x) is defined as

f(x) =
{

Pj when X = xj

0 otherwise

Note that is is required that
∑∞

j=1 f(xj) = 1.
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1
6

f(x)

x
654321 987

Figure: PDF of the score on the rolling of a fair die

• This particular example is a uniformly distributed random
variable.

• The p.d.f determines the distribution of the random
variable X.
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Example

Rolling two dice gives 36 possible outcomes, all with probability
1/36. So we let the random variable x be defined as

x = Score obtained when randomly rolling two fair dice.

x 2 3 4 5 6 7 8 9 10 11 12

f(x) 1
36

2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36
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Example (Continued)

6
36

f(x)

x654321 987 151413121110

Figure: PDF of the score obtained when rolling two fair dice
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Example

Suppose X = {0, 1, 2, 3}. Are the following functions possible
probability distribution functions?

i f(x) = 1
8(1 + x)

ii f(x) = 1
10(1 + x)
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Solution

For the first function

P1 =
1
8
, P2 =

2
8
, P3 =

3
8
, P4 =

4
8

and then
4∑

i=1

Pi =
10
8
6= 1

=⇒ this cannot be a probability distribution function.

For the second case, it is simple to show that

4∑
i=1

Pi = 1

and hence this function can be a p.d.f.
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Solution

For the first function

P1 =
1
8
, P2 =

2
8
, P3 =

3
8
, P4 =

4
8

and then
4∑

i=1

Pi =
10
8
6= 1

=⇒ this cannot be a probability distribution function.
For the second case, it is simple to show that

4∑
i=1

Pi = 1

and hence this function can be a p.d.f.
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Definition

The mean, expectation, or expected value µ of a discrete
distribution is given by

µ =
∑

j

xjf(xj) = x1f(x1) + x2f(x2) + · · · .
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Example

What is the mean/expected value on the rolling of a fair die?

Recall that

f(xj) =
1
6

for j = 1, 2, . . . , 6.

Then

µ = 1× 1
6

+ 2× 2
6

+ 3× 3
6

+ 4× 4
6

+ 5× 5
6

+ 6× 6
6

= 3.5.
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Example

Tossing a coin. Let

X = number of heads in a single toss,

i.e. X = 0 or X = 1. Then if the die is fair

P(X = 0) =
1
2
, P(X = 1) =

1
2
.

And so for the expected value µ

µ = 0× 1
2

+ 1× 1
2

=
1
2
.
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In both the previous examples µ is not realisable in a single
experiment. Rather, it represents the average “score“ if the
experiment were repeated many times.
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Example

Suppose we have a game that involves drawing a ball from a
bag that contains 6 white balls and 4 blue balls.

• If the ball is white, you win 40p

• If the ball is blue, you loose 80p

The ball is then replaced. What are your expected winnings?
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Solution

Let X = the winnings obtained after drawing the ball out, then

For X = x1 = 40 with P(x1) =
6
10

,

For X = x2 = −80 with P(x2) =
4
10

.

and therefore for the expected value

µ = x1 P(x1) + x2 P(x2) =
6
10
× 40 +

4
10
×−80 = −8

which means that in n games you would expect to loose 8np,
=⇒ don’t play!
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Definition: Variance

The variance of a distribution, denoted σ2 (or Var(X)) is
defined by

σ2 = Var(X) =
∑

j

(xj − µ)2f(xj)

= (x1 − µ)2f(x1) + (x2 − µ)2f(x2) + · · · .

The variance can be thought of as a measure of how far the
data is spread out. More specifically, it is the expectation (or
mean) of the squared deviation of that variable from its
expected value or mean.
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Note that

σ2 =
∑

j

(
x2

j − 2xjµ + µ2
)
f(xj)

=
∑

j

f(xj)x2
j − 2µ

∑
j

xjf(xj) + µ2
∑

j

f(xj)

=
∑

j

f(xj)x2
j − 2µ2 + µ2

=
∑

j

f(xj)x2
j − µ2

= E(X2)− µ2

where E(X2) is the expected value of X2. This is useful for
calculation purposes.
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The positive square root σ of the variance is known as the
standard deviation.

Example (Tossing of a coin)

We know that µ = 1
2 , and so using σ2 =

∑
j(xj − µ)2f(xj)

gives

σ2 =
(

0− 1
2

)2

× 1
2

+
(

1− 1
2

)2

× 1
2

=
1
4
.

alternatively we can use σ2 = E(X2)− µ2 to give

σ2 = 02 × 1
2

+ 12 × 1
2
−
(

1
2

)2

=
1
4
.
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Suppose an experiment (trial) has 2 outcomes that can be
labelled ’success’ or ’failure’ with probabilities p and q = 1− p
respectively.

For example, throwing of a 6, with p = 1
6 , q = 5

6 .

If we repeat such a trial a fixed number of times, say n times,
we can define a new discrete random variable which is the
number of successes in n trials.
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The Binomial Distribution

Four conditions must be satisfied.

1 The trial must only have two outcomes

2 The number of trials must be fixed

3 The probability of success must be the same for all trials

4 The trials are independent.

Example

Find the probability of 0,1,2,4 successes in an experiment
consisting of up to 4 repeated trial with probability of success p
(q = 1− p).
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Number of Trials 1 2 3 4

Number of Successes

0 q q2 q3 q4

1 p 2pq 3pq2 4pq3

2 0 p2 3p2q 6p2q2

3 0 0 p3 4p3q

4 0 0 0 p4
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In general for P(X = x), i.e. the probability of x successes in n
trials is given by

P(X = x) = f(x) =
(

n

x

)
pxqn−x,

where
(
n
x

)
is the binomial coefficient.

The distribution determined by the above distribution function
is called the Binomial Distribution

410 / 435



Basic
Probability

Introduction
to Random
Variables

The Binomial
Distribution

The Poisson
Distribution

Statistical
Regression

Probability and Statistics: Probability Distributions
The Binomial Distribution: Binomial Coefficient

Note that the binomial coefficient is given by(
n

x

)
=

n!
(n− x)!x!

which is sometimes written Cn
x, or nCx, and is the number of

ways of choosing x objects from a set containing n objects.

Example (
4
2

)
=

4!
2!2!

=
24

2× 2
= 6.
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Example

A die is thrown 56 times. Find the probability of obtaining at
least three sixes

Solution

Define a random variable X as

X = number of sixes thrown in 56 trials.

Then we can say that

X ∼ Binom
(

n = 56, p =
1
6

)
which should be read as “X follows a binomial distribution
with 56 trials and probability of success = 1

6”.
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...Solution continued

P(obtaining at least 3 sixes) = 1− P(obtaining 0,1 or 2 sixes)

i.e.

P(≥ 3 sixes) =

1−

[(
5
6

)56

+
(

56
1

)(
5
6

)55(1
6

)
+
(

56
2

)(
5
6

)54(1
6

)2
]

Note that it is acceptable to leave your answer in this form
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Example

Of a large number of mass-produced machine component, 10%
are defective; Find the probability that a random sample of
twenty components will contain

i Exactly 3 defective components

ii More than 3 defective components

Solution

Let X = number of defective components in a random sample
of 20. Then

X ∼ Binom(20, 0.1)
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Example continued

i We require P(X = 3), which is given by

P(X = 3) =
(

20
3

)
(0.1)3(0.9)17 ≈ 0.190.

ii We now require P(X ≥ 3), i.e.

P(X ≥ 3) = 1− P(X ≤ 2)
= 1− (P(X = 0) + P(X = 1) + P(X = 2))

= 1−
(

9
10

)20

−
(

20
1

)(
9
10

)19( 1
10

)
−
(

20
2

)(
9
10

)18( 1
10

)2

≈ 0.323.
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The Binomial Distribution: Notes of µ and σ2

Recall that for the binomial distribution

f(x) =
(

n

x

)
pxq1−x

and so for the mean µ it is possible to show that (proof
omitted)

µ =
n∑

x=0

xf(x)

=
n∑

x=0

(
n

x

)
pxqn−xx = np.

Also for the variance σ2, this can be shown to be

σ2 = npq = np(1− p).
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Probability and Statistics: Probability Distributions
The Poisson Distribution: Introduction

Consider the following

i The number of accidents per year in a given factory

ii The number of cars crossing a bridge per hour

iii The number of faults in a length of cable

The above require a distribution which involves an average rate
µ. If a random variables X is distributed such that the average
number of events in a specified interval is µ, then the
probability of x such events in that interval is

P(X = x) =
e−µµx

x!

This is known as the Poisson distribution. Note that a
random variable X that is Poisson distributed takes on values
0, 1, 2, . . . , to ∞.
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Probability and Statistics: Probability Distributions
The Poisson Distribution: Relationship with the Binomial Distribution

One of the most important uses of the Poisson distribution is
to approximate the Binomial distribution as Poisson is easier to
evaluate.

It may be shown (proof omitted) that the Poisson distribution
is a limiting case of the binomial distribution. Recall that for
the binomial distribution

f(x) =
(

n

x

)
pxqn−x

We let p −→ 0 and n −→∞ with µ = np fixed and finite.
Then

f(x) −→ Pois(µ).

Note that the Poisson distribution has mean µ and variance µ
(Try to show this).
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The Poisson Distribution: Example

Example

On average, 240 cars per hour pass through a check point, and
a queue forms if more than three cars pass through in a given
minute.

What is the probability that a queue forms in a randomly
selected minute?
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The Poisson Distribution: Example

Solution

The unit we work with is the minute .

Average number of cars per minute =
240
60

= 4 = µ

Let the random variable X be defined as

X = Number of cars forming in a randomly selected minute

then X ∼ Pois(4), and we require

P(X ≥ 3)
= 1− [P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)] .
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The Poisson Distribution: Example continued

Solution Continued

x P(X = x) = eµµx

x!

0 0.0183

1 0.0732

2 0.1464

3 0.1952

Total 0.4331

Hence
P(X ≥ 3) = 1− 0.4331 = 0.5669.
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The Poisson Distribution: Another Example

Example

The number of goals in 500 league games were distributed as
follows.

Goals/Match 0 1 2 3 4 5 6 7 8

Frequency 52 121 129 90 42 45 18 1 2

Compare this to a Poisson distribution.

Solution

Average Number of goals per match = µ =
1173
500

= 2.346
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The Poisson Distribution: Another Example (continued)

Example continued

We now calculate the Poisson frequencies using a random
variable X such that X ∼ Pois(2.346).

Number of games with y goals = 500× P(X = y)

Number of games with 0 goals = 500× P(X = 0)

= 500× e−2.346(2.346)0

0!
≈ 48

Number of games with 1 goal = 500× P(X = 1)

= 500× e−2.346(2.346)1

1!
≈ 112 etc...
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The Poisson Distribution: Another Example (continued)

Example continued

We now calculate the Poisson frequencies using a random
variable X such that X ∼ Pois(2.346).

Number of games with y goals = 500× P(X = y)
Number of games with 0 goals = 500× P(X = 0)

= 500× e−2.346(2.346)0
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The Poisson Distribution: Another Example (continued)

Solution (Continued)

Goals/Match 0 1 2 3 4 5 6 7 8

Frequency 48 111 132 103 60 28 11 4 1

which is a good fit to the original data.
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The Poisson Distribution: Using the Poisson to Estimate the Binomial
Distribution

Example

A factory produces screws. The probability that a randomly
selected screw is defective is given by p = 0.01.

In a random sample of 100 screws, what is the probability that
the same will contain more than 2 defective screws?
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The Poisson Distribution: Using the Poisson to Estimate the Binomial
Distribution

Solution

The complimentary event Ac, i.e. the probability that there are
no more than two defective screws, then

P(Ac) =
(

100
0

)
(0.01)0(0.99)100 +

(
100
1

)
(0.01)1(0.99)99

+
(

100
2

)
(0.01)2(0.99)98

which is quite a laborious calculation, though it is possible to
show that

P(A) = 1− P(Ac) ≈ 0.0794.
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The Poisson Distribution: Using the Poisson to Estimate the Binomial
Distribution

Example (continued)

An alternative is to use the Poisson approximation: As n is
large and p is small, we have

µ = np = 1,

i.e. on average every 1 in 100 is defective. Then

P(Ac) ≈ e−1

(
10

0!
+

11

1!
+

12

2!

)
= e−1 × 5

2
≈ 0.9197

and therefore

P(A) = 1− P(Ac) ≈ 0.0803

which is ‘close’ to the binomial distribution result.
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Probability and Statistics: Regression
Motivation

Consider pairs of variables (x1, y1), (x2.y2, . . . , (xn, yn)) where
x is known and/or controlled and y is a random variables
depending on x.

y

x

y =
k0 + k1x

Here we consider straight line
regression

y = k0 + k1x,

i.e. the task is to fit a straight line to the (xi, yi) data.
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Least Squares Regression

We use Least Squares: Straight line is such that the sum of
the squares of the distances of the points (xi.yi) from the
straight line is minimised.

Assume: The values x1, x2, . . . , xn are not all equal, then this
implies a unique straight line.

Derivation of the Least Squares Formula

The point (xj , yj) has vertical (y direction) distance from the
line y = k0 + k1x equal to

|yj − (k0 + k1xj)|
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Least Squares Regression: Formula Derivation

Derivation (Continued)

This implies the sum of the squares of the distances q is given
by

q =
n∑

j=1

(yj − k0 − k1xj)
2

and a minimum value of q must satisfy

∂q

∂k0
= 0 and

∂q

∂k1
= 0.
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Least Squares Regression: Formula Derivation

Derivation (Continued)

The first condition gives

− 2
n∑

j=1

(yj − k0 − k1xj) = 0

or
n∑

j=1

(yj − k0 − k1xj) = 0

or nȳ − nk0 − k1nx̄ = 0. (25)

since

x̄ =
1
n

n∑
j=1

xj and ȳ =
1
n

n∑
j=1

yj .
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Least Squares Regression: Formula Derivation

Derivation (Continued)

The second condition gives

− 2xj

n∑
j=1

(yj − k0 − k1xj) = 0

or
n∑

j=1

(
xjyj − k0xj − k1x

2
j

)
= 0

or
n∑

j=1

xjyj − nk0x̄− k1

n∑
j=1

x2
j = 0. (26)
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Probability and Statistics: Regression
Least Squares Regression: Formula Derivation

Equation (25) gives
k0 = ȳ − k1x̄,

and substituting to (26) yields

n∑
j=1

xjyj − n (ȳ − k1x̄) x̄− k1

n∑
j=1

x2
j = 0,

or

k1 =

∑n
j=1 xjyj − nx̄ȳ∑n
j=1 x2

j − nx̄2
=

∑n
j=1(xj − x̄)(yj − ȳ)∑n

j=1(xj − x̄)2
,

where the very last step is left as an exercise.
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Probability and Statistics: Regression
Least Squares Regression: Example

Calculate the last squares regression from the following data

xj yj ⇒ x2
j xjyj

4× 103 2.3 1.6× 107 9.2× 103

6× 103 4.1 3.6× 107 2.46× 104

8× 103 5.7 6.4× 107 4.56× 104

104 6.9 108 6.9× 104

which gives
x̄ = 7000, ȳ = 4.75,

n∑
j=1

x2
j = 2.16× 108,

n∑
j=1

xjyj = 1.484× 105.
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Least Squares Regression: Example

Hence

k1 =

∑n
j=1 xjyj − nx̄ȳ∑n
j=1 x2

j − nx̄2
=

15400
2× 107

= 0.00077

and
k0 = ȳ − k1x̄ = −0.64.

Therefore the regression line is

y = 0.00077x− 0.64.
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